Skip to main content
Log in

Multi-pulse edge-localized states on quantum graphs

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct the edge-localized stationary states of the nonlinear Schrödinger equation on a general quantum graph in the limit of large mass. Compared to the previous works, we include arbitrary multi-pulse positive states which approach asymptotically a composition of N solitons, each sitting on a bounded (pendant, looping, or internal) edge. We give sufficient conditions on the edge lengths of the graph under which such states exist in the limit of large mass. In addition, we compute the precise Morse index (the number of negative eigenvalues in the corresponding linearized operator) for these multi-pulse states. If N solitons of the edge-localized state reside on the pendant and looping edges, we prove that the Morse index is exactly N. The technical novelty of this work is achieved by avoiding elliptic functions (and related exponentially small scalings) and closing the existence arguments in terms of the Dirichlet-to-Neumann maps for relevant parts of the given graph. We illustrate the general results with three examples of the flower, dumbbell, and single-interval graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability statement

The datasets analysed during the current study are available from the corresponding author on request.

References

  1. Adami, R., Serra, E., Tilli, P.: NLS ground states on graphs. Calc. Var. 54, 743–761 (2015)

    Article  MathSciNet  Google Scholar 

  2. Adami, R., Serra, E., Tilli, P.: Threshold phenomena and existence results for NLS ground states on graphs. J. Funct. Anal. 271, 201–223 (2016)

    Article  MathSciNet  Google Scholar 

  3. Adami, R., Serra, E., Tilli, P.: Negative energy ground states for the \(L^2\)-critical NLSE on metric graphs. Commun. Math. Phys. 352, 387–406 (2017)

    Article  Google Scholar 

  4. Adami, R., Serra, E., Tilli, P.: Multiple positive bound states for the subcritical NLS equation on metric graphs. Calc. Var. 58, 5 (2019)

    Article  MathSciNet  Google Scholar 

  5. Berkolaiko, G., Kuchment, P.: Introduction to Quantum Graphs (Mathematical Surveys and Monographs, vol 186. American Mathematical Society, Providence, RI (2013)

  6. Berkolaiko, G., Marzuola, J., Pelinovsky, D.E.: Edge-localized states on quantum graphs in the limit of large mass. Ann. de l’Inst. Henri Poincaré C Anal. Non linéaire 38, 1295–1335 (2021)

  7. Berkolaiko, G., Kennedy, J.B., Kurasov, P., Mugnolo, D.: Surgery principles for the spectral analysis of quantum graphs. Trans. AMS 372, 5153–5197 (2019)

    Article  MathSciNet  Google Scholar 

  8. Cacciapuoti, C., Finco, D., Noja, D.: Topology induced bifurcations for the NLS on the tadpole graph. Phys. Rev. E 91, 013206 (2015)

  9. Dovetta, S., Serra, E., Tilli, P.: Uniqueness and non-uniqueness of prescribed mass NLS ground states on metric graphs, Adv. Math. 374 (2020), 107352 (41 pages)

  10. Dovetta, S., Ghimenti, M., Micheletti, A.M., Pistoia, A.: Peaked and low action solutions of NLS equations on graphs with terminal edges. SIAM J. Math. Anal. 52, 2874–2894 (2020)

    Article  MathSciNet  Google Scholar 

  11. Exner, P., Kovarik, H.: Quantum Waveguides. Theoretical and Mathematical Physics. Springer, Cham (2015)

    Book  Google Scholar 

  12. Garijo, A., Villadelprat, J.: Algebraic and analytical tools for the study of the period function. J. Differ. Eqs. 257, 2464–2484 (2014)

    Article  MathSciNet  Google Scholar 

  13. Goodman, R.H., Conte, G., Marzuola, J.L.: Quantum Graphs Package, version 0.96 (2021), https://doi.org/10.5281/zenodo.4898112

  14. Goodman, R.H.: NLS bifurcations on the bowtie combinatorial graph and the dumbbell metric graph. Discrete Contin. Dyn. Syst. 39(4), 2203–2232 (2019)

    Article  MathSciNet  Google Scholar 

  15. Grillakis, M.: Linearized instability for nonlinear Schrödinger and Klein–Gordon equations. Commun. Pure Appl. Math. 41, 747–774 (1988)

    Article  MathSciNet  Google Scholar 

  16. Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry I. J. Funct. Anal. 74, 160–197 (1987)

    Article  MathSciNet  Google Scholar 

  17. Kairzhan, A., Marangell, R., Pelinovsky, D.E., Xiao, K.: Standing waves on a flower graph. J. Differ. Eqs. 271, 719–763 (2021)

    Article  MathSciNet  Google Scholar 

  18. Kato, T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer, Berlin (1995)

  19. Kurata, K., Shibata, M.: Least energy solutions to semi-linear elliptic problems on metric graphs. J. Math. Anal. Appl. 491 124297 (22 pages) (2020)

  20. Latushkin, Y., Sukhtaiev, S.: An index theorem for Schrödinger operators on metric graphs. Contemp. Math. 741, 105–119 (2020)

    Article  Google Scholar 

  21. Marzuola, J.L., Pelinovsky, D.E.: Ground state on the dumbbell graph. Appl. Math. Res. Express. AMRX 1, 98–145 (2016)

    Article  MathSciNet  Google Scholar 

  22. Noja, D., Pelinovsky, D.E. (eds.): Symmetries of Nonlinear PDEs on Metric Graphs and Branched Networks. MDPI, Basel (2019)

  23. Noja, D., Pelinovsky, D.E.: Standing waves of the quintic NLS equation on the tadpole graph. Calc. Var. Partial Differ. Equ. 59 (2020) 173 (31 pages)

  24. Noja, D.: Nonlinear Schrödinger equation on graphs: recent results and open problems, Philos. Trans. R. Soc. A, 372, 20130002 (20 pages) (2014)

  25. Noja, D., Pelinovsky, D., Shaikhova, G.: Bifurcations and stability of standing waves in the nonlinear Schrödinger equation on the tadpole graph. Nonlinearity 28, 2343–2378 (2015)

    Article  MathSciNet  Google Scholar 

  26. Shatah, J., Strauss, W.: Spectral conditions for instability, Nonlinear PDE’s, dynamics and continuum physics (South Hadley, MA, 1998), Contemp. Math. Am. Math. Soc., Providence, RI, 255, 189–198 (2000)

  27. Teschl, G.: Ordinary Differential Equations and Dynamical Systems, Graduate Studies in Mathematics 140. AMS, Providence (2012)

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank Roy Goodman for many suggestions helping us to improve the presentation of this paper and for preparing the illustrating example shown on Fig. 6. A. Kairzhan thanks the Fields Institute for Research in Mathematical Sciences for its support and hospitality during the thematic program on Mathematical Hydrodynamics in July–December, 2020. D.E. Pelinovsky acknowledges the support from the NSERC Discovery grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry E. Pelinovsky.

Ethics declarations

Conflict of interest

The authors have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kairzhan, A., Pelinovsky, D.E. Multi-pulse edge-localized states on quantum graphs. Anal.Math.Phys. 11, 171 (2021). https://doi.org/10.1007/s13324-021-00603-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-021-00603-3

Navigation