Skip to main content
Log in

A Simplified Anisotropic Yield Function not Requiring Parameter Optimization for Sheet Metals

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Recently developed anisotropic yield functions can capture the material anisotropic behaviors through parameter optimization. However, sometimes the parameter optimization is not easy and does not always have a unique solution. This paper introduces an anisotropic yield function that does not require the parameter calibration process. This model simplifies the coupled quadratic and non-quadratic yield function in order to directly use the measured on-set of yielding stress and r-value data without the calibration process. The presented model is validated with five different materials for the prediction of stress and strain anisotropies. In addition, a cup drawing simulation is also presented to validate the simplified model in a practical metal forming simulation with the User-defined subroutine of ABAQUS. The results of this paper show that the simplified model can be effectively employed for the simulation of sheet metal forming processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hill, R. (1948). A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. Lond, A, 193, 281–297.

    Article  Google Scholar 

  2. Hosford, W. F. (1972). A generalized isotropic yield criterion. J. Appl. Mech. Trans, 39(2), 607–609.

    Article  Google Scholar 

  3. Hill, R. (1972). Constitutive analysis of elastic-plastic crystals at arbitrary strain. Journal of the Mechanics and Physics of Solids, 20(6), 401–413.

    Article  Google Scholar 

  4. Hill, R. (1990). Constitutive modelling of orthotropic plasticity in sheet metals. Journal of the Mechanics and Physics of Solids, 38(3), 405–417.

    Article  MathSciNet  Google Scholar 

  5. Hosford, W.F. (1979). On yield loci of anisotropic cubic metals. In: Proc. 7th North American Metalworking Conf. SME, Dearborn, MI.

  6. Logan, R. W., & Hosford, W. F. (1980). Upper-bound anisotropic yield locus calculations assuming< 111>-pencil glide. International Journal of Mechanical Sciences, 22(7), 419–430.

    Article  Google Scholar 

  7. Barlat, F., & Lian, J. (1989). Plastic behavior and stretchability of sheet metals. Part I: A yield function for orthotropic sheets under plane stress conditions. Int. J. Plasticity, 5, 51–66.

    Article  Google Scholar 

  8. Barlat, F., Lege, D. J., & Brem, J. C. (1991). A six-component yield function for anisotropic materials. Int. J. Plas, 7(7), 693–712.

    Article  Google Scholar 

  9. Chung, K., & Shah, K. (1992). Finite element simulation of sheet metal forming for planar anisotropic metals. International Journal of Plasticity, 8(4), 453–476.

    Article  Google Scholar 

  10. Yoon, J. W., Yang, D. Y., Chung, K., & Barlat, F. (1999). A general elasto-plastic finite element formulation based on incremental deformation theory for planar anisotropy and its application to sheet metal forming. International Journal of Plasticity, 15(1), 35–67.

    Article  Google Scholar 

  11. Tong, W. (2016). Generalized fourth-order Hill’s 1979 yield function for modeling sheet metals in plane stress. Acta Mech., 227, 2719–2733.

    Article  MathSciNet  Google Scholar 

  12. Szwed, A., Kamińska, I. (2021). Explicit form of yield conditions dual to a class of dissipation potentials dependent on three invariants. Acta Mechanica, 232(3), 1087–1111.

    Article  MathSciNet  Google Scholar 

  13. Barlat, F., Brem, J. C., Yoon, J. W., Chung, K., Dick, R. E., Lege, D. J., & Chu, E. (2003). Plane stress yield function for aluminum alloy sheets part 1: Theory. International Journal of Plasticity, 19(9), 1297–1319.

    Article  Google Scholar 

  14. Banabic, D., Aretz, H., Comsa, D. S., & Paraianu, L. (2005). An improved analytical description of orthotropy in metallic sheets. International Journal of Plasticity, 21(3), 493–512.

    Article  Google Scholar 

  15. Banabic, D., Comsa, D. S., Sester, M., Selig, M., Kubli, W., Mattiasson, K., Sigvant, M. (2008). Influence of constitutive equations on the accuracy of prediction in sheet metal forming simulation. In: Numisheet. pp. 37–42.

    Google Scholar 

  16. Cazacu, O., & Barlat, F. (2004). A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals. International Journal of Plasticity, 20(11), 2027–2045.

    Article  Google Scholar 

  17. Stoughton, T. B. (2002). A non-associated flow rule for sheet metal forming. International Journal of Plasticity, 18(5), 687–714.

    Article  Google Scholar 

  18. Stoughton, T. B., & Yoon, J. W. (2004). A pressure-sensitive yield criterion under a non-associated flow rule for sheet metal forming. International Journal of Plasticity, 20(4), 705–731.

    Article  Google Scholar 

  19. Stoughton, T. B., & Yoon, J. W. (2006). A review of Drucker’s postulate and the issue of plastic stability in metal forming. International Journal of Plasticity, 22, 391–433.

    Article  Google Scholar 

  20. Stoughton, T. B., & Yoon, J. W. (2008). On the existence of indeterminate solutions to the equations of motion under non-associated flow. International Journal of Plasticity, 24, 583–613.

    Article  Google Scholar 

  21. Stoughton, T. B., & Yoon, J. W. (2009). Anisotropic hardening and non-associated flow in proportional loading of sheet metals. International Journal of Plasticity, 25, 1777–1817.

    Article  Google Scholar 

  22. Cvitanic, V., Vlak, F., & Lozina, Z. (2008). A finite element formulation based on non-associated plasticity for sheet metal forming. International Journal of Plasticity, 24, 646–687.

    Article  Google Scholar 

  23. Safaei, M., Zang, S., & l., Lee, M.G., Waele, W. D. . (2013). Evaluation of anisotropic constitutive models: Mixed anisotropic hardening and non-associated flow rule approach. International Journal of Mechanical Sciences, 73, 53–68.

    Article  Google Scholar 

  24. Lee, E. H., Stoughton, T. B. Y., & J. W. . (2017). A yield criterion through coupling of quadratic and non-quadratic functions for anisotropic hardening with non-associated flow rule. International Journal of Plasticity, 99, 120–143.

    Article  Google Scholar 

  25. Lee, E. H. (2018). Kinematic hardening model considering directional hardening response. International Journal of Plasticity, 110, 145–165.

    Article  Google Scholar 

  26. Lee, E. H., Choi, H. S., Stoughton, T. B. Y., & J. W. . (2019). Combined anisotropic and distortion hardening to describe directional response with Bauschinger effect. Int. J. Plasticity, 122, 73–88.

    Article  Google Scholar 

  27. Lee, E. H., & Rubin, M. B. (2020). Modeling anisotropic inelastic effects in sheet metal forming using microstructural vectors–Part I: Theory. Int. J. Plast, 134, 102783.

    Article  Google Scholar 

  28. Hollenstein, M., Jabareen, M., Rubin, M.B., (2013). Modeling a smooth elastic–inelastic transition with a strongly objective numerical integrator needing no iteration. Computational Mechanics, 52, 649–667.

    Article  MathSciNet  MATH  Google Scholar 

  29. Chung, K., Richmond, O. (1992). Ideal forming – I. homogeneous deformation with minimum plastic work. International Journal of Mechanical Sciences, 34(7), 575–591.

    Article  Google Scholar 

  30. Ting, T. C. T. (1985). Determination of C1/2, C -1/2 and more general isotropic tensor functions of C. Journal of Elasticity, 15, 319–323.

    Article  MathSciNet  Google Scholar 

  31. Tong, W. (2018). Calibration of a complete homogeneous polynomial yield function of six degrees for modeling orthotropic steel sheets. Acta Mechanica, 229, 2495–2519.

    Article  Google Scholar 

  32. Tian, H., Brownell, B., Baral, M., & Korkolis, Y. P. (2016). Earing in cup-drawing of anisotropic Al-6022-T4 sheets. International Journal of Material Forming, 10(3), 329–343.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Trade, Industry & Energy (MOTIE, Korea) through the project (No. 20014530, Development of high-speed impact trimming press for cutting automotive parts of 1.6GPa-class ultra-high strength steel), funded by the Korea Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun-Ho Lee.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, JH., Lee, EH. A Simplified Anisotropic Yield Function not Requiring Parameter Optimization for Sheet Metals. Int. J. Precis. Eng. Manuf. 23, 67–78 (2022). https://doi.org/10.1007/s12541-021-00579-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-021-00579-x

Keywords

Navigation