Skip to main content

Advertisement

Log in

Nanoarchitectonics of Hydroxyapatite/Molybdenum Trioxide/Graphene Oxide Composite for Efficient Antibacterial Activity

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Nanocomposites based on hydroxyapatite (HAP), including MoO3, HAP/MoO3, HAP/GO and HAP/MoO3/GO have been studied to be suggested for biological usage. The different compositions were investigated using FTIR, XRD, EDS, and XPS analysis. The tight relation between morphological features and composites' chemical ingredients was also studied. According to TEM micrographs, it was mentioned that the disappearance of well-defined grains after the combinations of HAP and MoO3, while graphene oxide (GO) caused a reduction in size and maintaining the particles’ shape. The combination between HAP/MoO3 declines the roughness of both HAP and MoO3 individually, recording 27.5 nm, while HAP/GO and HAP/MoO3/GO exhibit in-between roughness average (Ra) value among its raw constituents with 34.7 and 33.5 nm, respectively. Furthermore, SEM micrographs and roughness results show how to tailing the proper features for the proposed application by changing the type and amount of additives into HAP. Thus, the composite (HAP/MoO3/GO) displays the uppermost cell viability compared with the rest compositions with 97.8 ± 3.0%. Additionally, this triple composite hits the peak germicidal behavior with 17.9 ± 1.2 and 16.5 ± 0.9 mm against both E.coli and S.aureus, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.P. Casaletto, S. Kaciulis, G. Mattogno, A. Mezzi, L. Ambrosio, F. Branda, XPS characterization of biocompatible hydroxyapatite-polymer coatings. Surf. Interface Anal. 34, 45–49 (2002)

    Article  CAS  Google Scholar 

  2. M.K. Ahmed, S.F. Mansour, M.S. Mostafa, R. Darwesh, S.I. El-dek, Structural, mechanical and thermal features of Bi and Sr co-substituted hydroxyapatite. J. Mater. Sci. 54, 1977–1991 (2018)

    Article  Google Scholar 

  3. S.F. Mansour, S.I. El-dek, S.V. Dorozhkin, M.K. Ahmed, Physico-mechanical properties of Mg and Ag doped hydroxyapatite/chitosan biocomposites. New J. Chem. 41, 13773–13783 (2017)

    Article  CAS  Google Scholar 

  4. S.F. Mansour, S.I. El-dek, M.K. Ahmed, Tailoring the structure of biphasic calcium phosphate via synthesis procedure. Mater. Res. Express 4, 125015 (2017)

    Article  Google Scholar 

  5. S.F. Mansour, S.I. El-dek, M. Ismail, M.K. Ahmed, Structure and cell viability of Pd substituted hydroxyapatite nano particles. Biomed. Phys. Eng. Express 4, 045008 (2018)

    Article  Google Scholar 

  6. S.F. Mansour, S.I. El-Dek, M.K. Ahmed, Physico-mechanical and morphological features of zirconia substituted hydroxyapatite nano crystals. Sci. Rep. 7, 43202 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. N.R. Vokhidova, K.H. Ergashev, S.S. Rashidova, Hydroxyapatite-chitosan Bombyx mori: synthesis and physicochemical properties. J. Inorg. Organomet. Polym. Mater. 30, 3357–3368 (2020)

    Article  CAS  Google Scholar 

  8. F. Absalan, M.S. Sadjadi, N. Farhadyar, M.H. Sadr, Synthesis of mesoporous hydroxyapatite with controlled pore size using the chitosan as an organic modifier: investigating the effect of the weight ratio and pH value of chitosan on the structural and morphological properties. J. Inorg. Organomet. Polym. Mater. 30, 3562–3573 (2020)

    Article  CAS  Google Scholar 

  9. E. Salimi, In-situ synthesis of a novel bioresorbable sodium alginate/hydroxyapatite–calcium pyrophosphate nanocomposite as bone replacement. J. Inorg. Organomet. Polym. Mater. 30, 1769–1775 (2019)

    Article  Google Scholar 

  10. S.H. An, T. Matsumoto, H. Miyajima, A. Nakahira, K.H. Kim, S. Imazato, Porous zirconia/hydroxyapatite scaffolds for bone reconstruction. Dent. Mater. 28, 1221–1231 (2012)

    Article  CAS  PubMed  Google Scholar 

  11. N. Jing, A.-N. Zhou, Q.-H. Xu, The synthesis of super-small nano hydroxyapatite and its high adsorptions to mixed heavy metallic ions. J. Hazard. Mater. 353, 89–98 (2018)

    Article  CAS  PubMed  Google Scholar 

  12. Y. Wang, J. Wang, H. Hao, M. Cai, S. Wang, J. Ma et al., In vitro and in vivo mechanism of bone tumor inhibition by selenium-doped bone mineral nanoparticles. ACS Nano 10, 9927–9937 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. C.-L. Tseng, K.-C. Chang, M.-C. Yeh, K.-C. Yang, T.-P. Tang, F.-H. Lin, Development of a dual-functional Pt–Fe-HAP magnetic nanoparticles application for chemo-hyperthermia treatment of cancer. Ceram. Int. 40, 5117–5127 (2014)

    Article  CAS  Google Scholar 

  14. S.C. Veerla, D.R. Kim, J. Kim, H. Sohn, S.Y. Yang, Controlled nanoparticle synthesis of Ag/Fe co-doped hydroxyapatite system for cancer cell treatment. Mater. Sci. Eng. C 98, 311–323 (2019)

    Article  CAS  Google Scholar 

  15. Y. Zhao, J. Xu, Z. Li, T. Fu, S. Jiang, In vitro antibacterial properties of MoO3/SiO2/Ag2O nanocomposite coating prepared by double cathode glow discharge technique. Surf. Coat. Technol. 397, 125992 (2020)

    Article  CAS  Google Scholar 

  16. R. Zou, T. Xu, X. Lei, Q. Wu, S. Xue, Novel design of porous hollow hydroxyapatite microspheres decorated by reduced graphene oxides with superior photocatalytic performance for tetracycline removal. Solid State Sci 99, 106067 (2020)

    Article  CAS  Google Scholar 

  17. Y. Zhang, Y. Wang, X. Cao, J. Xue, Q. Zhang, J. Tian et al., Effect of carboxyl and hydroxyl groups on adsorptive polysaccharide fouling: a comparative study based on PVDF and graphene oxide (GO) modified PVDF surfaces. J. Membr. Sci. 595, 117514 (2020)

    Article  Google Scholar 

  18. Y. Zhang, H. Ruan, C. Guo, J. Liao, J. Shen, C. Gao, Thin-film nanocomposite reverse osmosis membranes with enhanced antibacterial resistance by incorporating p-aminophenol-modified graphene oxide. Separ. Purif. Technol. 234, 116017 (2020)

    Article  Google Scholar 

  19. Y.Y. Xie, X.H. Hu, Y.W. Zhang, F. Wahid, L.Q. Chu, S.R. Jia et al., Development and antibacterial activities of bacterial cellulose/graphene oxide-CuO nanocomposite films. Carbohydr. Polym. 229, 115456 (2020)

    Article  CAS  PubMed  Google Scholar 

  20. M.K. Ahmed, S.F. Mansour, R. Ramadan, M. Afifi, M.S. Mostafa, S.I. El-dek et al., Tuning the composition of new brushite/vivianite mixed systems for superior heavy metal removal efficiency from contaminated waters. J. Water Process Eng. 34, 101090 (2020)

    Article  Google Scholar 

  21. W. Qiao, Z. Yang, An improved dolphin swarm algorithm based on Kernel fuzzy C-means in the application of solving the optimal problems of large-scale function. IEEE Access 8, 17 (2020)

    Google Scholar 

  22. W. Wu, X. Zhang, L. Qin, X. Li, Q. Meng, C. Shen et al., Enhanced MPBR with polyvinylpyrrolidone-graphene oxide/PVDF hollow fiber membrane for efficient ammonia nitrogen wastewater treatment and high-density Chlorella cultivation. Chem. Eng. J. 379, 122368 (2020)

    Article  CAS  Google Scholar 

  23. M. Wu, X. Qi, R. Xie, Z. Bai, S. Qin, W. Zhong et al., Graphene oxide/carbon nanotubes/Co Fe3-O4 ternary nanocomposites: controllable synthesis and their excellent microwave absorption capabilities. J. Alloys Compd. 813, 151996 (2020)

    Article  CAS  Google Scholar 

  24. S.-D. Wang, K. Wang, Q. Ma, C.-X. Qu, Fabrication of the multifunctional durable silk fabric with synthesized graphene oxide nanosheets. Mater. Today Commun. 23, 100893 (2020)

    Article  CAS  Google Scholar 

  25. K.R. Vijesh, P.N. Musfir, T. Thomas, M. Vaishakh, V.P.N. Nampoori, S. Thomas, Enhanced nonlinear optical properties of solution dispersed carbon dots decorated graphene oxide with varying viscosity. Opt. Laser Technol. 121, 105776 (2020)

    Article  CAS  Google Scholar 

  26. B. Tang, Y. Dai, Y. Sun, H. Chen, Z. Wang, Graphene and MOFs co-modified composites for high adsorption capacity and photocatalytic performance to remove pollutant under both UV- and visible-light irradiation. J. Solid State Chem. 284, 121215 (2020)

    Article  CAS  Google Scholar 

  27. S. Tan, X. Wu, Y. Xing, S. Lilak, M. Wu, J.X. Zhao, Enhanced synergetic antibacterial activity by a reduce graphene oxide/Ag nanocomposite through the photothermal effect. Colloids Surf. B 185, 110616 (2020)

    Article  CAS  Google Scholar 

  28. W. Qiao, W. Tian, Y. Tian, Q. Yang, Y. Wang, J. Zhang, The forecasting of PM2.5 using a hybrid model based on wavelet transform and an improved deep learning algorithm. IEEE Access 7, 12 (2019)

    Article  Google Scholar 

  29. W. Qiao, Z. Yang, Solving large-scale function optimization problem by using a new metaheuristic algorithm based on quantum dolphin swarm algorithm. IEEE Access 7, 18 (2019)

    Google Scholar 

  30. S. Sun, Y. Tang, C. Wu, C. Wan, Phytic acid functionalized ZIF-67 decorated graphene nanosheets with remarkably boosted electrochemical sensing performance. Anal. Chim. Acta 1107, 55 (2020)

    Article  CAS  PubMed  Google Scholar 

  31. M. Sieradzka, R. Fryczkowski, D. Biniaś, W. Biniaś, J. Janicki, A facile approach to obtaining PVDF/graphene fibers and the effect of nanoadditive on the structure and properties of nanocomposites. Polym. Test. 81, 106229 (2020)

    Article  CAS  Google Scholar 

  32. R. Shu, J. Zhang, C. Guo, Y. Wu, Z. Wan, J. Shi et al., Facile synthesis of nitrogen-doped reduced graphene oxide/nickel-zinc ferrite composites as high-performance microwave absorbers in the X-band. Chem. Eng. J. 384, 123266 (2020)

    Article  CAS  Google Scholar 

  33. J. Sheng, H. Yin, F. Qian, H. Huang, S. Gao, J. Wang, Reduced graphene oxide-based composite membranes for in-situ catalytic oxidation of sulfamethoxazole operated in membrane filtration. Sep Purif Technol 236, 116275 (2020)

    Article  CAS  Google Scholar 

  34. A.L. Rivera-Briso, F.L. Aachmann, V. Moreno-Manzano, A. Serrano-Aroca, Graphene oxide nanosheets versus carbon nanofibers: enhancement of physical and biological properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) films for biomedical applications. Int. J. Biol. Macromol. 143, 1000–1008 (2020)

    Article  CAS  PubMed  Google Scholar 

  35. P. Hajipour, A. Bahrami, A. Eslami, A. Hosseini-Abari, H. Hagh Ranjbar, Chemical bath synthesis of CuO-GO-Ag nanocomposites with enhanced antibacterial properties. J. Alloys Compd. 821, 153456 (2020)

    Article  CAS  Google Scholar 

  36. M.A. Ashraf, Y. Yang, A. Fakhri, Synthesis of NiS–MoO3 nanocomposites and decorated on graphene oxides for heterogeneous photocatalysis, antibacterial and antioxidant activities. Ceram. Int. 46, 8379–8384 (2020)

    Article  CAS  Google Scholar 

  37. M.K. Ahmed, M.E. El-Naggar, A. Aldalbahi, M.H. El-Newehy, A.A. Menazea, Methylene blue degradation under visible light of metallic nanoparticles scattered into graphene oxide using laser ablation technique in aqueous solutions. J. Mol. Liq. 315, 113794 (2020)

    Article  CAS  Google Scholar 

  38. A.M. Abdelghany, A.A. Menazea, A.M. Ismail, Synthesis, characterization and antimicrobial activity of Chitosan/Polyvinyl Alcohol blend doped with Hibiscus Sabdariffa L. extract. J. Mol. Struct. 1197, 603–609 (2019)

    Article  CAS  Google Scholar 

  39. A.A. Menazea, I.S. Elashmawi, F.H. Abd El-kader, N.A. Hakeem, Nanosecond pulsed laser ablation in liquids as new route for preparing polyvinyl carbazole/silver nanoparticles composite: spectroscopic and thermal studies. J. Inorg. Organomet. Polym. Mater. 28, 2564–2571 (2018)

    Article  CAS  Google Scholar 

  40. T. Nagyne-Kovacs, L. Studnicka, I.E. Lukacs, K. Laszlo, P. Pasierb, I.M. Szilagyi et al., Hydrothermal synthesis and gas sensing of monoclinic MoO3 nanosheets. Nanomaterials 10, 891 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  41. A.M. Mostafa, A.A. Menazea, Polyvinyl Alcohol/Silver nanoparticles film prepared via pulsed laser ablation: an eco-friendly nano-catalyst for 4-nitrophenol degradation. J. Mol. Struct. 1212, 128125 (2020)

    Article  CAS  Google Scholar 

  42. A.A. Menazea, A.M. Mostafa, E.A. Al-Ashkar, Impact of CuO doping on the properties of CdO thin films on the catalytic degradation by using pulsed-Laser deposition technique. Opt. Mater. 100, 109663 (2020)

    Article  CAS  Google Scholar 

  43. S. Tang, B. Tian, Y.-J. Guo, Z.-A. Zhu, Y.-P. Guo, Chitosan/carbonated hydroxyapatite composite coatings: Fabrication, structure and biocompatibility. Surf. Coat. Technol. 251, 210–216 (2014)

    Article  CAS  Google Scholar 

  44. N. Murugan, C. Murugan, A.K. Sundramoorthy, In vitro and in vivo characterization of mineralized hydroxyapatite/polycaprolactone-graphene oxide based bioactive multifunctional coating on Ti alloy for bone implant applications. Arab. J. Chem. 11, 959–969 (2018)

    Article  CAS  Google Scholar 

  45. L. Duta, N. Mihailescu, A.C. Popescu, C.R. Luculescu, I.N. Mihailescu, G. Çetin et al., Comparative physical, chemical and biological assessment of simple and titanium-doped ovine dentine-derived hydroxyapatite coatings fabricated by pulsed laser deposition. Appl. Surf. Sci. 413, 129–139 (2017)

    Article  CAS  Google Scholar 

  46. I.V. Fadeeva, S.M. Barinov, A.Y. Fedotov, V.S. Komlev, Interactions of calcium phosphates with chitosan. Dokl. Chem. 441, 387–390 (2012)

    Article  Google Scholar 

  47. J.A. Luceño-Sánchez, G. Maties, C. Gonzalez-Arellano, A.M. Díez-Pascual, Synthesis and characterization of graphene oxide derivatives via functionalization reaction with hexamethylene diisocyanate. Proceedings 3, 8 (2018)

    Google Scholar 

  48. L. Wei, D. Pang, L. He, C. Deng, Crystal structure analysis of selenium-doped hydroxyapatite samples and their thermal stability. Ceram. Int. 43, 16141–16148 (2017)

    Article  CAS  Google Scholar 

  49. K. Zawisza, P. Sobierajska, N. Nowak, A. Kedziora, K. Korzekwa, B. Pozniak et al., Preparation and preliminary evaluation of bio-nanocomposites based on hydroxyapatites with antibacterial properties against anaerobic bacteria. Mater. Sci. Eng. C 106, 110295 (2020)

    Article  CAS  Google Scholar 

  50. B. Moreno-Perez, Z. Matamoros-Veloza, J.C. Rendon-Angeles, K. Yanagisawa, A. Onda, J.E. Pérez-Terrazas et al., Synthesis of silicon-substituted hydroxyapatite using hydrothermal process. Boletín de la Sociedad Española de Cerámica y Vidrio 59, 50–64 (2020)

    Article  CAS  Google Scholar 

  51. K. Shoueir, M.K. Ahmed, S.A. Abdel Gaber, M. El-Kemary, Thallium and selenite doped carbonated hydroxyapatite: Microstructural features and anticancer activity assessment against human lung carcinoma. Ceram. Int. 46, 5201–5212 (2020)

    Article  CAS  Google Scholar 

  52. M.K. Ahmed, S.F. Mansour, M.S. Mostafa, R. Darwesh, S.I. El-dek, Structural, mechanical and thermal features of Bi and Sr co-substituted hydroxyapatite. J. Mater. Sci. 54, 1977–1991 (2019)

    Article  CAS  Google Scholar 

  53. M. Kaviya, P. Ramakrishnan, S.B. Mohamed, R. Ramakrishnan, J. Gimbun, K.M. Veerabadran et al., Synthesis and characterization of nano-hydroxyapatite/graphene oxide composite materials for medical implant coating applications. Mater. Today 36, 204 (2020)

    Google Scholar 

  54. M.K. Ahmed, S.F. Mansour, R. Al-Wafi, M. Afifi, V. Uskoković, Gold as a dopant in selenium-containing carbonated hydroxyapatite fillers of nanofibrous ε-polycaprolactone scaffolds for tissue engineering. Int. J. Pharmaceut. 577, 118950 (2020)

    Article  CAS  Google Scholar 

  55. U. Rajaji, S. Manavalan, S.M. Chen, S. Chinnapaiyan, T.W. Chen, R.R. Jothi, Facile synthesis and characterization of erbium oxide (Er2O3) nanospheres embellished on reduced graphene oxide nanomatrix for trace-level detection of a hazardous pollutant causing methemoglobinaemia. Ultrason. Sonochem. 56, 422–429 (2019)

    Article  PubMed  Google Scholar 

  56. S.-L. Iconaru, M. Motelica-Heino, D. Predoi, Study on europium-doped hydroxyapatite nanoparticles by fourier transform infrared spectroscopy and their antimicrobial properties. J. Spectrosc. 2013, 1 (2013)

    Article  Google Scholar 

  57. Y. Chen, C. Lu, L. Xu, Y. Ma, W. Hou, J.-J. Zhu, Single-crystalline orthorhombic molybdenum oxide nanobelts: synthesis and photocatalytic properties. CrystEngComm 12, 3740 (2010)

    Article  CAS  Google Scholar 

  58. F. Samanipour, M.R. Bayati, H.R. Zargar, F. Golestani-Fard, T. Troczynski, M. Taheri, Electrophoretic enhanced micro arc oxidation of ZrO2–HAp–TiO2 nanostructured porous layers. J. Alloy. Compd. 509, 9351–9355 (2011)

    Article  CAS  Google Scholar 

  59. H. Zhou, J. Lee, Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 7, 2769–2781 (2011)

    Article  CAS  PubMed  Google Scholar 

  60. K. Kaviyarasu, K. Kanimozhi, N. Matinise, C. Maria Magdalane, G.T. Mola, J. Kennedy et al., Antiproliferative effects on human lung cell lines A549 activity of cadmium selenide nanoparticles extracted from cytotoxic effects: Investigation of bio-electronic application. Mater. Sci. Eng. C 76, 1012–1025 (2017)

    Article  CAS  Google Scholar 

  61. A. Menazea, S.A. Abdelbadie, M. Ahmed, Manipulation of AgNPs coated on selenium/carbonated hydroxyapatite/ε-polycaprolactone nano-fibrous via pulsed laser deposition for wound healing applications. Appl. Surf. Sci. 508, 145299 (2020)

    Article  CAS  Google Scholar 

  62. K. Castkova, H. Hadraba, A. Matousek, P. Roupcova, Z. Chlup, L. Novotna et al., Synthesis of Ca, Y-zirconia/hydroxyapatite nanoparticles and composites. J. Eur. Ceram. Soc. 36, 2903–2912 (2016)

    Article  CAS  Google Scholar 

  63. A.A. Menazea, One-pot pulsed laser ablation route assisted copper oxide nanoparticles doped in PEO/PVP blend for the electrical conductivity enhancement. J. Mater. Res. Technol. 1207, 127807 (2020)

    Google Scholar 

  64. A. Samy, A.E. El-Sherbiny, A.A. Menazea, Green synthesis of high impact zinc oxide nanoparticles. Egypt. J. Chem. 62, 4–8 (2019)

    Article  Google Scholar 

  65. M.K. Ahmed, R. Al-Wafi, S.F. Mansour, S.I. El-dek, V. Uskoković, Physical and biological changes associated with the doping of carbonated hydroxyapatite/polycaprolactone core-shell nanofibers dually, with rubidium and selenite. J. Market. Res. 9, 3710–3723 (2020)

    CAS  Google Scholar 

  66. <PHASE TRANSITIONS AND ELASTICITY IN ZIRCONIA.pdf>.

  67. N.E. Eleraky, A. Allam, S.B. Hassan, M.M. Omar, Nanomedicine fight against antibacterial resistance: an overview of the recent pharmaceutical innovations. Pharmaceutics 12, 142 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  68. G. Sai-Anand, A. Sivanesan, M.R. Benzigar, G. Singh, A.-I. Gopalan, A.V. Baskar et al., Recent progress on the sensing of pathogenic bacteria using advanced nanostructures. Bull. Chem. Soc. Jpn. 92, 216–244 (2019)

    Article  CAS  Google Scholar 

  69. S.K. Golombek, J.N. May, B. Theek, L. Appold, N. Drude, F. Kiessling et al., Tumor targeting via EPR: strategies to enhance patient responses. Adv. Drug Deliv. Rev. 130, 17–38 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. S. Elbasuney, Green synthesis of hydroxyapatite nanoparticles with controlled morphologies and surface properties toward biomedical applications. J. Inorg. Organomet. Polym. Mater. 30, 899–906 (2019)

    Article  Google Scholar 

  71. M. Hidouri, S.V. Dorozhkin, N. Albeladi, Thermal behavior, sintering and mechanical characterization of multiple ion-substituted hydroxyapatite bioceramics. J. Inorg. Organomet. Polym. Mater. 29, 87–100 (2018)

    Article  Google Scholar 

  72. M.F. Mohd Yusoff, N.H. Abu Kasim, W.H. Himratul-Aznita, S. Saidin, K. Genasan, T. Kamarul et al., Physicochemical, antibacterial and biocompatibility assessments of silver incorporated nano-hydroxyapatite synthesized using a novel microwave-assisted wet precipitation technique. Mater. Charact. 178, 111169 (2021)

    Article  CAS  Google Scholar 

  73. A. Jenifer, K. Senthilarasan, S. Arumugam, P. Sivaprakash, S. Sagadevan, P. Sakthivel, Investigation on antibacterial and hemolytic properties of magnesium-doped hydroxyapatite nanocomposite. Chem. Phys. Lett. 771, 138539 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Taif University Researchers Supporting Project Number (TURSP-2020/220), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrez E. El-Naggar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Naggar, M.E., Ali, O.A.A., Saleh, D.I. et al. Nanoarchitectonics of Hydroxyapatite/Molybdenum Trioxide/Graphene Oxide Composite for Efficient Antibacterial Activity. J Inorg Organomet Polym 32, 399–411 (2022). https://doi.org/10.1007/s10904-021-02109-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02109-8

Keywords

Navigation