Skip to main content
Log in

Experience of Deep-Sea Drilling in the World Ocean: Methodical and Practical Significance for Stratigraphic Studies

  • Published:
Stratigraphy and Geological Correlation Aims and scope Submit manuscript

Abstract

The results of stratigraphic studies carried out in the process of international deep-sea drilling in the last fifty years are presented. They make a great contribution to development and improvement of the methods for detailed stratigraphic studies and dating of marine sedimentary sequences as well as reconstructions of past oceanological and climatic events. The results obtained are of great methodological importance for stratigraphic investigations of the whole Phanerozoic. The distinguished Cenozoic biostratigraphic zones can really be traced across the whole tropical and subtropical area. The study data on planktonic microorganism (calcareous and siliceous) assemblages which were an integral part of Mesozoic and Cenozoic marine ecosystems made a considerable contribution to these works. These assemblages developed over time against the background of variable oceanic circulation and sedimentation conditions, changes in deep and surface water productivity, water temperature, etc. In general, the evolution trend of biotic communities reflects the development and reorganization stages of the past ecosystems. All these data make it possible to reveal the real sequence of not only biotic but also abiotic events (climatic, oceanographic, and eustatic) in the World Ocean for the last 70–75 million years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. A Geologic Time Scale 2004, Gradstein, F.M., Ogg, J.G., and Smith, A.G., Eds., Cambridge: Cambridge Univ. Press, 2004.

    Google Scholar 

  2. Agnini, C., Fornaciari, E., Raffi, I., Catanzariti, R., Palike, H., Backman, J., and Rio, D., Biozonation and biochronology of Paleogene calcareous nannofossils from low and middle latitudes, Newsl. Stratigr., 2014, vol. 47, pp. 131–181.

    Article  Google Scholar 

  3. Baldauf, J.G. and Barron, J.A., Evolution of biosiliceous sedimentation patterns—Eocene through Quaternary: paleoceanographic response to polar cooling, in Geological History of the Polar Oceans: Arctic versus Antarctic, Bleil, U. and Thiede, J., Eds., Kluwer Acad. Publ., 1990, pp. 575–607.

    Google Scholar 

  4. Bandy, O.L., Cenozoic planktonic foraminiferal zonation, Micropaleontology, 1964, vol. 10, pp. 1–17.

    Article  Google Scholar 

  5. Barron, J.A., Planktonic marine diatom record of the past 18 m.y.: Appearances and extinctions in the Pacific and Southern Oceans, Diatom Res., 2003, vol. 18, pp. 203–224.

    Article  Google Scholar 

  6. Barron, J.A., Diatom biochronology for the Early Miocene of the Equatorial Pacific, Stratigraphy, 2005, vol. 2, pp. 281–309.

    Google Scholar 

  7. Barron, J.A. and Gladenkov, A.Y., Early Miocene to Pleistocene diatom stratigraphy of Leg 145, Proc. ODP. Sci. Res. College Station. TX (Ocean Drilling Program), 1995, vol. 145, pp. 3–19.

  8. Barron, J.A., Larsen, B., and Baldauf, J.G., Evidence for late Eocene to early Oligocene Antarctic glaciation and observations on late Neogene glacial history of Antarctica: results from Leg 119, Proc. ODP. Sci. Res. College Station. TX (Ocean Drilling Program), 1991, vol. 119, pp. 869–891.

  9. Barron, J.A., Stickley, C.E., and Bukry, D., Paleoceanographic and paleoclimatic constraints on the global Eocene diatom and silicoflagellate record, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2015, vol. 422, pp. 85–100.

    Article  Google Scholar 

  10. Basov I.A. Deep drilling in oceans, Soros. Obraz. Zh., 2001, vol. 7, no. 10, pp. 59–66.

    Google Scholar 

  11. Berggren, W.A., Rates of evolution of some Cenozoic planktonic foraminifera, Micropaleontology, 1969, vol. 15, pp. 351–365.

    Article  Google Scholar 

  12. Berggren, W.A. and Pearson, P., Tropical to subtropical planktonic foraminiferal zonation of the Eocene and Oligocene, J. Foraminiferal Res., 2005, vol. 35, pp. 279–298.

    Article  Google Scholar 

  13. Berggren, W.A., Kent, D.V., Swisher, C.C.III., and Aubry, M.-P., A revised Cenozoic geochronology and chronostratigraphy, in Geochronology, Time Scales and Global Stratigraphic Correlation, Berggren, W.A., Kent, D.V., Aubry, M.-P., and Handerbol, J., Eds., SEPM Spec. Publ., 1995, no. 54, pp. 129–212.

  14. Blow, W.H., Late middle Eocene to Recent planktonic foraminiferal biostratigraphy, in Proc. First Int. Conf. on Planktonic microfossils, Geneva, 1967, Bronnimann, P.R. and Renz, H.H., Eds., Leiden: E.J. Brill, 1969, vol. 1, pp. 199–421.

  15. Bolli, H.M., Planktonic foraminifers from the Oligocene-Miocene Cipero and Lengua formations of Trinidad, B.W.I., U.S. Nat. Mus. Bull., 1957a, no. 215, pp. 97–123.

  16. Bolli, H.M., Planktonic foraminifers from the Eocene Navet and San Fernando formations of Trinidad, B.W.I., U.S. Nat. Mus. Bull., 1957b, no. 215, pp. 155–172.

  17. Bolli, H.M., The genera Globigerina and Globorotalia in the Paleocene-lower Eocene Lizard Formation of Trinidad, B.W.I., U.S. Nat. Mus. Bull., 1957c, no. 215, pp. 61–81.

  18. Bolli, H.M., Zonation of Cretaceous to Pliocene marine sediments based on planktonic foraminifera, Bol. Inf. - Asoc. Venez. Geol., Min. Pet., 1966, vol. 9, pp. 3–32.

    Google Scholar 

  19. Bramlette, M.N. and Riedel, W.R., Stratigraphic value of discoasters and some other microfossils related to recent coccolithophores, J. Paleontol., 1954, vol. 28, pp. 385–403.

    Google Scholar 

  20. Bukry, D., Low-latitude coccolith biostratigraphic zonation, Initial Rep. Deep Sea Drill. Proj., Washington, DC: U.S. Government Print. Office, 1973, vol. 15.

  21. Bukry, D., Coccolith and silicoflagellate stratigraphy, northwestern Pacific Ocean, Deep Sea Drilling Project Leg 32, Initial Rep. Deep Sea Drill. Proj., Washington, DC: U.S. Government Print. Office, 1975, vol. 32, pp. 677–701.

    Google Scholar 

  22. Cande, S.C. and Kent, D.V., A new geomagnetic polarity time scale for the Late Cretaceous and Cenozoic, J. Geophys. Res., 1992, vol. 97, pp. 13917–13951.

    Article  Google Scholar 

  23. Cande, S.C. and Kent, D.V., Revised calibration of the geomagnetic polarity time scale for the Late Cretaceous and Cenozoic, J. Geophys. Res., 1995, vol. 100, pp. 6093–6095.

    Article  Google Scholar 

  24. Cramer, B.S., Toggweiler, J.R., Wright, J.D., Katz, M.E., and Miller, K.G., Ocean overturning since the Late Cretaceous: inferences from a new benthic foraminiferal isotope compilation, Paleoceanography, 2009, vol. 24, PA4216.

    Article  Google Scholar 

  25. DePaolo, D.J. and Ingram, B., High-resolution stratigraphy with strontium isotopes, Science, 1985, vol. 227, pp. 938–941.

    Article  Google Scholar 

  26. Falkowski, P.G., Katz, M.E., Knoll, A.H., Quigg, A., Raven, J.A., Schofield, O., and Taylor, F.J.R., The evolution of modern eukaryotic phytoplankton, Science, 2004, vol. 305, pp. 354–360.

    Article  Google Scholar 

  27. Farrell, J.W., Clemens, S.C., and Gromet, L.P., Improved chronostratigraphic reference curve of late Neogene seawater 87Sr/86Sr, Geology, 1995, vol. 23, pp. 403–406.

    Article  Google Scholar 

  28. Geological History of the Polar Oceans: Arctic versus Antarctic, Bleil, U. and Thiede, J., Eds., Kluwer Acad. Publ., 1990.

    Google Scholar 

  29. Geologic Time Scale 2020, Gradstein, F.M., Ogg, J.G., Schmitz M.D. and Ogg, G.M., Eds., Elsevier BV, 2020.

  30. Gladenkov, A.Yu., Late Cenozoic detailed stratigraphy and marine ecosystems of the North Pacific region (based on diatoms), in Tr. GIN RAN. Vyp. 571 (Trans. Geol. Inst. Russ. Acad. Sci. Vol. 571), Moscow: GEOS, 2007.

  31. Gladenkov, A.Yu., Bipolar distribution of some earliest Oligocene marine diatoms, Nova Hedwigia, 2014, beih. 143, pp. 337–368.

    Google Scholar 

  32. Gladenkov, Yu.B., Biosphere stratigraphy (stratigraphic problems of the early XXI century), in Tr. GIN RAN. Vyp. 551 (Trans. Geol. Inst. Russ. Acad. Sci. Vol. 551), Moscow: GEOS, 2004.

  33. Gladenkov, Yu.B., Zonal biostratigraphy in the solution of the fundamental and applied problems of geology, Stratigr. Geol. Correl., 2010, vol. 18, no. 6, pp. 660–673.

    Article  Google Scholar 

  34. Haq, B.U., Hardenbol, J., and Vail, P.R., Chronology of fluctuating sea levels since the Triassic, Science, 1987, vol. 235, pp. 1156–1167.

    Article  Google Scholar 

  35. Hardenbol, J., Thierry, J., Farley, M.B., Jacquin, T., de Graciansky, P.-C., and Vail, P.R., Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins, SEPM Spec. Publ., 1998, no. 60, pp. 3–13, 763–781.

  36. Harwood, D.M. and Maruyama, T., Middle Eocene to Pleistocene diatom biostratigraphy of Southern Ocean sediments from the Kerguelen Plateau, Leg 120, Proc. ODP. Sci. Results. College Station. TX (Ocean Drilling Program), 1992, vol. 120, pp. 683–733.

  37. Hay, W.W., Mohler, H., Roth, P.H., Schmidt, R.R., and Boudreau, J.E., Calcareous nannoplankton zonation of the Cenozoic of the Gulf Coast and Caribbean–Antillean area, and transoceanic correlation, Trans.-Gulf Coast Assoc. Geol. Soc., 1967, vol. 17, pp. 428–480.

    Google Scholar 

  38. Hodell, D.A., Mueller, P.A., McKenzie, J.A., and Mead, G.A., Strontium isotope stratigraphy and geochemistry of the late Neogene ocean, Earth Planet. Sci. Lett., 1989, vol. 92, pp. 165–178.

    Article  Google Scholar 

  39. International Stratigraphic Guide—An abridged version. Murphy, M.A. and Salvador, A., Eds. Episodes, 1999, vol. 22, pp. 255–271.

    Article  Google Scholar 

  40. Keller, G. and Barron, J.A., Paleoceanographic implications of Miocene deep-sea hiatuses, Bull. Geol. Soc. Am., 1983, vol. 94, pp. 590–613.

    Article  Google Scholar 

  41. Keller, G. and Barron, J.A., Paleodepth distribution of Neogene deep-sea hiatuses, Paleoceanography, 1987, vol. 2, pp. 697–713.

    Article  Google Scholar 

  42. Kennett, J.P., Marine Geology, Prentice-Hall: Englewood Cliffs, NJ, 1982.

    Google Scholar 

  43. Koepnick, R.B., Burke, W.H., Denison, R.E., Hetherington, E.A., Nelson, H.F., Otto, J.B., and Waite, L.E., Construction of the seawater 87Sr/86Sr curve for the Cenozoic and Cretaceous: supporting data, Chem. Geol., 1985, vol. 58, pp. 55–81.

    Article  Google Scholar 

  44. Krasheninnikov, V.A., Geographical and stratigraphical distribution of planktonic foraminifers in Paleogene deposits of tropical and subtropical areas, in Tr. GIN AN SSSR. Vyp. 202 (Trans Geol. Inst. USSR Acad. Sci. Vol. 202), Moscow: Nauka, 1969.

  45. Krasheninnikov, V.A., Stratigraphy of the Miocene deposits of the Region of the Atlantic, Indian and Pacific oceans on the base of Foraminifera, in Tr. GIN AN SSSR. Vyp. 233 (Trans Geol. Inst. USSR Acad. Sci. Vol. 233), Moscow: Nauka, 1973.

  46. Krasheninnikov, V.A. and Basov, I.A., Stratigraphy of Paleogene deposits of the World Ocean and correlation with sections on continents, in Tr. GIN RAN. Vyp. 583 (Trans Geol. Inst. Russ. Acad. Sci. Vol. 583), Moscow: Nauchn. mir, 2007.

  47. Kuznetsov, A.B., Semikhatov, M.A., and Gorokhov, I.M., Strontium Isotope Stratigraphy: Principles and State of the Art, Stratigr. Geol. Correl., 2018, vol. 26, no. 4, pp. 367–386.

    Article  Google Scholar 

  48. Leonov, G.P., Osnovy stratigrafii. T. 1 (Basics of Stratigraphy. Vol. 1), Moscow: Mosk. Gos. Univ., 1973 [in Russian].

  49. Lisitzin, A.P., Protsessy okeanskoi sedimentatsii: litologiya i geokhimiya (Oceanic Sedimentation Processes: Lithology and Geochemistry), Moscow: Nauka, 1978 [in Russian].

  50. Litvin, V.M., Morfostruktura dna okeanov (The Morphostructure of Ocean Floor), Leningrad: Nedra, 1987 [in Russian].

  51. Martini, E., Standard Tertiary and Quaternary calcareous nannoplankton zonation, in Proc. Second Planktonic Conf., Roma, 1970, Farinacci, A., Ed., Roma: Edizioni Tecnoscienza, 1971, vol. 2, pp. 739–785.

  52. Matsuoka, A., Jurassic and Early Cretaceous radiolarians from Leg 129, Sites 800 and 801, Western Pacific Ocean, in Proc. ODP. Sci. Results. College Station. TX (Ocean Drilling Program), 1992, vol. 129, pp. 203–220.

  53. Matul’, A.G., Deep-water scientific drilling in the ocean: Structure, Results, Plans, Priroda, 2010. no. 7, pp. 24–33.

  54. McArthur, J.M., Howarth, R.J., and Bailey, T.R., Strontium isotope stratigraphy: LOWESS Version 3: Best fit to the marine Sr-Isotope curve for 0–509 Ma and accompanying look-up table for deriving numerical age, J. Geol., 2001, vol. 109, pp. 155–170.

    Article  Google Scholar 

  55. McArthur, J.M., Howarth, R.J., Shields, G.A., and Zhou, Y., Strontium isotope stratigraphy, in Geologic Time Scale 2020, Gradstein, F.M., Ogg, J.G., Schmitz, M.D., and Ogg G.M., Eds., Elsevier, 2020, pp. 211–238.

    Google Scholar 

  56. Menner, V.V., Izbrannye trudy. Obshchie voprosy stratigrafii (General Problems of Stratigraphy. Selective Works), Moscow: Nauka, 1991 [in Russian].

  57. Miller, K.G., Fairbanks, R.G., and Mountain, G.S., Tertiary isotope synthesis, sea level history, and continental margin erosian, Paleoceanography, 1987, vol. 2, pp. 1–19.

    Article  Google Scholar 

  58. Miller, K.G., Wright, J.D., and Fairbanks, R.G., Unlocking the Ice House: Oligocene–Miocene oxygen isotopes, eustasy, and margin erosion, J. Geophys. Res., 1991, vol. 96, no. B4, pp. 6829–6848.

    Article  Google Scholar 

  59. Miller, K.G., Browning, J.V., Schmelz, W.J., Kopp, R.E., Mountain, G.S., and Wright, J.D., Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records, Sci. Advances, 2020, vol. 6, no. 20, eaaz1346.

  60. Morozova, V.G., The Paleogene zonal stratigraphy based on the evolution of microforaminifers, in Tr. soveshch. po razrabotke unifitsirovannoi stratigraficheskoi shkaly tretichnykh otlozhenii Krymsko-Kavkazskoi oblasti (Proc. Conf. on Development of the Unified Stratigraphic Scale of Tertiary deposits of the Crimea–Caucasus Region), Moscow: Izd. Akad. Nauk SSSR, 1959, pp. 277–293.

  61. Ogg, J.G., Ogg, G.M., and Gradstein, F.M., Concise Geologic Time Scale, 2016, Elsevier, 2016.

    Google Scholar 

  62. Okada, H. and Bukry, D., Supplementary modification and introduction of code numbers to the low-latitude coccolith biostratigraphic zonation (Bukry, 1973; 1975), Mar. Micropalaeontol., 1980, vol. 5, pp. 321–325.

    Article  Google Scholar 

  63. Okeanologiya. Geologiya okeana. Geologicheskaya istoriya okeana (Oceanology. Geology of the Ocean. Geological History of the Ocean), Monin, A.S. and Lisitsyn, A.P., Eds., Moscow: Nauka, 1980.

    Google Scholar 

  64. Page, K.N., The Lower Jurassic of Europe: Its subdivision and correlation, GEUS Bull., 2003, vol. 1, pp. 23–59.

    Article  Google Scholar 

  65. Plankton Stratigraphy, Bolli, H.M., Saunders, J.B., and Perch-Nielsen, K., Eds., Cambridge: Cambridge Univ. Press, 1985.

  66. Productivity of the Oceans: Present and Past, Berger, W.H., Smetacek, V.S., and Wefer, G., Eds., New York: Wiley-Intersci., 1989.

    Google Scholar 

  67. Raffi, I., Agnini, C., Backman, J., Catanzariti, R., and Pälike, H., A Cenozoic calcareous nannofossil biozonation from low and middle latitudes: A synthesis, J. Nannoplankton Res., 2016, vol. 36, pp. 121–132.

    Google Scholar 

  68. Rubanik, N.K., Deep sea drilling in the oceans: History and potentials (to 40th Anniversary of the International Ocean Drilling Program), Stratigr. Geol. Correl., 2008, vol. 16, no. 6, pp. 678–682.

    Article  Google Scholar 

  69. Seibold, E. and Berger, W.H., The Sea Floor. An Introduction to Marine Geology, Berlin, New York: Springer-Verlag, 1982.

    Google Scholar 

  70. Shutskaya, E.K., Stratigraphy, foraminifers and paleogeography of the Lower Paleogene in Crimea, Ciscaucasia and Western Central Asia, in Tr. VNIGRI, Vyp. 70 (Proc. All-Russ. Petrol. Res. Explor. Inst (VNIGRI)). Vol. 70), Moscow: Nedra, 1970.

  71. Stepanov, D.L. and Mesezhnikov, M.S., Obshchaya stratigrafiya (metody stratigraficheskikh issledovanii) (General Stratigraphy: Principles and Methods of Stratigraphical Researches), Leningrad: Nedra, 1979 [in Russian].

  72. Stratigraficheskii kodeks Rossii. Izd. tret’e, ispravl. dopoln. (Stratigraphic Code of Russia, 3rd ed. (Revised and Extended)), St. Petersburg: Vseross. Nauchno-Issled. Geol. Inst., Mezhved. Stratigr. Kom., 2019 [in Russian].

  73. Subbotina, N.N., Pelagic foraminifers in Paleogene deposits of the USSR, in Paleogenovye otlozheniya yuga evropeiskoi chasti SSSR (Paleogene Deposits in the South of the European USSR), Moscow: Izd. Akad. Nauk SSSR, 1960, pp. 24–38.

  74. The Geologic Time Scale 2012, Gradstein, F.M., Ogg, J.M., Schmitz, M.D., and Ogg, G.M., Eds., Elsevier, 2012.

    Google Scholar 

  75. The Miocene Ocean: Paleoceanography and Biogeography, Kennett, J.P., Ed., Mem. Geol. Soc. Am., 1985, vol. 163.

  76. Udintsev, G.B., Rel’ef i stroenie dna okeanov (Relief and Structure of the Ocean Floor), Moscow: Nedra, 1987 [in Russian].

  77. Vail, P.R. and Hardenbol, J., Sea-level changes during the Tertiary, Oceanus, 1979, vol. 22, pp. 71–79.

    Google Scholar 

  78. Wade, B.S., Pearson, P.N., Berggren, W.A., and Palike, H., Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale, Earth-Sci. Rev., 2011, vol. 104, pp. 111–142.

    Article  Google Scholar 

  79. Zachos, J., Pagain, M., Sloan, L., Thomas, E., and Billups, K., Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 2001, vol. 292, pp. 686–691.

    Article  Google Scholar 

  80. Zachos, J.C., Dickens, G.R., and Zeebe, R.E., An Early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics, Nature, 2008, vol. 451, pp. 279–283.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.G. Matul, V.S. Vishnevskaya, and L.F. Kopaevich for constructive advice taken into account when revising the paper.

Funding

This work was carried out under the state assignment of the Geological Institute, Russian Academy of Sciences and with the support from the Russian Foundation for Basic Research (project no. 19-05-00361).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Yu. Gladenkov or Yu. B. Gladenkov.

Additional information

Reviewers V.S. Vishnevskaya, L.F. Kopaevich, and A.G. Matul

Translated by E. Maslennikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gladenkov, A.Y., Gladenkov, Y.B. Experience of Deep-Sea Drilling in the World Ocean: Methodical and Practical Significance for Stratigraphic Studies. Stratigr. Geol. Correl. 29, 548–571 (2021). https://doi.org/10.1134/S0869593821050026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869593821050026

Keywords:

Navigation