Skip to main content

Advertisement

Log in

Bovine Milk Exosomes Alleviate Cardiac Fibrosis via Enhancing Angiogenesis In Vivo and In Vitro

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Cardiac fibrosis is a difficult clinical puzzle without effective therapy. Exosomes play an important role in alleviating cardiac fibrosis via angiogenesis. This research aimed to assess the effect of bovine milk on cardiac fibrosis. The proangiogenic effect of bovine milk exosomes was analyzed both in isoproterenol (ISO)-induced cardiac fibrosis rats in vivo and in human umbilical vein endothelial cells (HUVECs) after oxygen and glucose deprivation (OGD) in vitro. Results indicated that bovine milk exosomes alleviated the extracellular matrix (ECM) deposition and enhanced the cardiac function in cardiac fibrosis rat. The proangiogenic growth factors were significantly enhanced in rats accepted bovine milk exosomes. Meanwhile, bovine milk exosomes ameliorated the motility, migration, and tube-forming ability of HUVECs after OGD in vitro. Bovine milk exosomes alleviate cardiac fibrosis and enhance cardiac function in cardiac fibrosis rats via enhancing angiogenesis. Bovine milk exosomes may represent a potential strategy for the treatment of cardiac fibrosis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ECM:

Extracellular matrix

ISO:

Isoproterenol

PBS:

Phosphate-buffered saline

H&E:

Hematoxylin and eosin

LVIDd:

Left ventricular internal dimension at end-diastole

LVIDs:

Left ventricular internal dimension at end-systole

LVPWs:

Left ventricular posterior wall thickness at end-systole

LVPWd:

Left ventricular posterior wall thickness at end-diastole

SV:

Stroke volume

ESV:

End-systole volume

EDV:

End-diastole volume

CO:

Cardiac output

EF:

Ejection fraction

FS:

Fractional shortening

PCNA:

Proliferating cell nuclear antigen

VEGF:

Vascular endothelial growth factor

HUVEC:

Human umbilical vein endothelial cell

RPMI:

Roswell Park Memorial Institute

FBS:

Fetal bovine serum

OGD:

Oxygen and glucose deprivation

References

  1. Zhang, C., Zhang, Y., Zhu, H., et al. (2018). MiR-34a/miR-93 target c-Ski to modulate the proliferaton of rat cardiac fibroblasts and extracellular matrix deposition in vivo and in vitro. Cellular Signalling, 46, 145–153. https://doi.org/10.1016/j.cellsig.2018.03.005

    Article  CAS  PubMed  Google Scholar 

  2. Ma, Z. G., Yuan, Y. P., Wu, H. M., et al. (2018). Cardiac fibrosis: New insights into the pathogenesis. International Journal of Biological Sciences, 14, 1645–1657. https://doi.org/10.7150/ijbs.28103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Weintraub, R. G., Semsarian, C., & Macdonald, P. (2017). Dilated cardiomyopathy. Lancet, 390, 400–414. https://doi.org/10.1016/S0140-6736(16)31713-5

    Article  CAS  PubMed  Google Scholar 

  4. Gulati, A., Jabbour, A., Ismail, T. F., et al. (2013). Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA, 309, 896–908. https://doi.org/10.1001/jama.2013.1363

    Article  CAS  PubMed  Google Scholar 

  5. Hu, J., Chen, X., Li, P., et al. (2021). Exosomes derived from human amniotic fluid mesenchymal stem cells alleviate cardiac fibrosis via enhancing angiogenesis in vivo and in vitro. Cardiovascular Diagnosis and Therapy, 11(2), 348–361. https://doi.org/10.21037/cdt-20-1032

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shaihov-Teper, O., Ram, E., Ballan, N., et al. (2021). Extracellular vesicles from epicardial fat facilitate atrial fibrillation. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.120.052009

    Article  PubMed  Google Scholar 

  7. Aqil, F., Munagala, R., Jeyabalan, J., et al. (2014). Abstract 5407: Milk derived exosomes: Scalable source of biologically active drug delivery nanoparticles. Cancer Research (Chicago, Ill.), 74, 5407. https://doi.org/10.1158/1538-7445.AM2014-5407

    Article  Google Scholar 

  8. Izumi, H., Kosaka, N., Shimizu, T., et al. (2012). Bovine milk contains microRNA and messenger RNA that are stable under degradative conditions. Journal of Dairy Science, 95, 4831–4841. https://doi.org/10.3168/jds.2012-5489

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, C., Zhang, C., Xu, Y., et al. (2020). Exosomes derived from human placenta-derived mesenchymal stem cells improve neurologic function by promoting angiogenesis after spinal cord injury. Neuroscience Letters, 739, 135399. https://doi.org/10.1016/j.neulet.2020.135399

    Article  CAS  PubMed  Google Scholar 

  10. Sun, J., Shen, H., Shao, L., et al. (2020). HIF-1alpha overexpression in mesenchymal stem cell-derived exosomes mediates cardioprotection in myocardial infarction by enhanced angiogenesis. Stem Cell Research & Therapy, 11, 373. https://doi.org/10.1186/s13287-020-01881-7

    Article  CAS  Google Scholar 

  11. Matthew R., Warren Chenzhen, Zhang Armin, Vedadghavami Krister, Bokvist Pradeep K., Dhal Ambika G., Bajpayee (2021) Milk exosomes with enhanced mucus penetrability for oral delivery of siRNA. Biomaterials Science 9(12) 4260–4277 https://doi.org/10.1039/D0BM01497D

  12. Han, D., Kim, H. Y., Lee, H. J., et al. (2007). Wound healing activity of gamma-aminobutyric acid (GABA) in rats. Journal of Microbiology and Biotechnology, 17, 1661–1669.

    CAS  PubMed  Google Scholar 

  13. Wang, N., Chen, C., Yang, D., et al. (2017). Mesenchymal stem cells-derived extracellular vesicles, via miR-210, improve infarcted cardiac function by promotion of angiogenesis. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1863, 2085–2092. https://doi.org/10.1016/j.bbadis.2017.02.023

    Article  CAS  Google Scholar 

  14. Mathew, S. A., Naik, C., Cahill, P. A., et al. (2020). Placental mesenchymal stromal cells as an alternative tool for therapeutic angiogenesis. Cellular and Molecular Life Sciences, 77, 253–265. https://doi.org/10.1007/s00018-019-03268-1

    Article  CAS  PubMed  Google Scholar 

  15. Xiao, Y., Liu, Y., Liu, J., et al. (2018). The association between myocardial fibrosis and depressed capillary density in rat model of left ventricular hypertrophy. Cardiovascular Toxicology, 18, 304–311. https://doi.org/10.1007/s12012-017-9438-7

    Article  CAS  PubMed  Google Scholar 

  16. Krisp, C., Jacobsen, F., McKay, M. J., et al. (2013). Proteome analysis reveals antiangiogenic environments in chronic wounds of diabetes mellitus type 2 patients. Proteomics, 13, 2670–2681. https://doi.org/10.1002/pmic.201200502

    Article  CAS  PubMed  Google Scholar 

  17. Yoshitomi, Y., Ikeda T., Saito-Takatsuji, H., et al. (2021). Emerging role of AP-1 transcription factor JunB in angiogenesis and vascular development.International Journal of Molecular Sciences, 22.https://doi.org/10.3390/ijms22062804.

  18. Kholia, S., Ranghino, A., Garnieri, P., et al. (2016). Extracellular vesicles as new players in angiogenesis. Vascular Pharmacology, 86, 64–70. https://doi.org/10.1016/j.vph.2016.03.005

    Article  CAS  PubMed  Google Scholar 

  19. Silvestre, J. S., Smadja, D. M., & Levy, B. I. (2013). Postischemic revascularization: From cellular and molecular mechanisms to clinical applications. Physiological Reviews, 93, 1743–1802. https://doi.org/10.1152/physrev.00006.2013

    Article  CAS  PubMed  Google Scholar 

  20. Teng, X., Chen, L., Chen, W., et al. (2015). Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation. Cellular Physiology and Biochemistry, 37, 2415–2424. https://doi.org/10.1159/000438594

    Article  CAS  PubMed  Google Scholar 

  21. Zheng, X., Hermann, D. M., Bahr, M., et al. (2021). The role of small extracellular vesicles in cerebral and myocardial ischemia-molecular signals, treatment targets, and future clinical translation. Stem Cells, 39, 403–413. https://doi.org/10.1002/stem.3329

    Article  CAS  PubMed  Google Scholar 

  22. Li, Q., Song, Y., Wang, Q., et al. (2021). Engineering extracellular vesicles with platelet membranes fusion enhanced targeted therapeutic angiogenesis in a mouse model of myocardial ischemia reperfusion. Theranostics, 11, 3916–3931. https://doi.org/10.7150/thno.52496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ma, T., Chen, Y., Chen, Y., et al. (2018). MicroRNA-132, Delivered by mesenchymal stem cell-derived exosomes, promote angiogenesis in myocardial infarction. Stem Cells Int, 2018, 3290372. https://doi.org/10.1155/2018/3290372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alvarez-Erviti, L., Seow, Y., Yin, H., et al. (2011). Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nature Biotechnology, 29, 341–345. https://doi.org/10.1038/nbt.1807

    Article  CAS  PubMed  Google Scholar 

  25. Hagiwara, K., Ochiya, T., & Kosaka, N. (2014). A paradigm shift for extracellular vesicles as small RNA carriers: From cellular waste elimination to therapeutic applications. Drug Delivery and Translational Research, 4, 31–37. https://doi.org/10.1007/s13346-013-0180-9

    Article  CAS  PubMed  Google Scholar 

  26. Somiya, M., Yoshioka, Y., & Ochiya, T. (2018). Biocompatibility of highly purified bovine milk-derived extracellular vesicles. J Extracell Vesicles, 7, 1440132. https://doi.org/10.1080/20013078.2018.1440132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liao, Y., Du, X., Li, J., et al. (2017). Human milk exosomes and their microRNAs survive digestion in vitro and are taken up by human intestinal cells. Molecular Nutrition & Food Research, 61.https://doi.org/10.1002/mnfr.201700082.

  28. Zeng, B., Chen, T., Xie, M. Y., et al. (2019). Exploration of long noncoding RNA in bovine milk exosomes and their stability during digestion in vitro. Journal of Dairy Science, 102, 6726–6737. https://doi.org/10.3168/jds.2019-16257

    Article  CAS  PubMed  Google Scholar 

  29. Rani, P., Vashisht, M., Golla, N., et al. (2017). Milk miRNAs encapsulated in exosomes are stable to human digestion and permeable to intestinal barrier in vitro. Journal of Functional Foods, 34, 431–439. https://doi.org/10.1016/j.jff.2017.05.009

    Article  CAS  Google Scholar 

  30. Tome-Carneiro, J., Fernandez-Alonso, N., Tomas-Zapico, C., et al. (2018). Breast milk microRNAs harsh journey towards potential effects in infant development and maturation. Lipid encapsulation can help. Pharmacological Research, 132, 21–32. https://doi.org/10.1016/j.phrs.2018.04.003

    Article  CAS  PubMed  Google Scholar 

  31. Yamashita, T., Takahashi, Y., & Takakura, Y. (2018). Possibility of exosome-based therapeutics and challenges in production of exosomes eligible for therapeutic application. Biological & Pharmaceutical Bulletin, 41, 835–842. https://doi.org/10.1248/bpb.b18-00133

    Article  CAS  Google Scholar 

  32. Lin, D., Chen, T., Xie, M., et al. (2020). Oral administration of bovine and porcine milk exosome alter miRNAs profiles in piglet serum. Science and Reports, 10, 6983. https://doi.org/10.1038/s41598-020-63485-8

    Article  CAS  Google Scholar 

  33. Nordgren, T. M., Heires, A. J., Zempleni, J., et al. (2019). Bovine milk-derived extracellular vesicles enhance inflammation and promote M1 polarization following agricultural dust exposure in mice. Journal of Nutritional Biochemistry, 64, 110–120. https://doi.org/10.1016/j.jnutbio.2018.10.017

    Article  CAS  PubMed  Google Scholar 

  34. Zhou, F., Paz, H. A., Sadri, M., et al. (2019). Dietary bovine milk exosomes elicit changes in bacterial communities in C57BL/6 mice. American Journal of Physiology. Gastrointestinal and Liver Physiology, 317, G618–G624. https://doi.org/10.1152/ajpgi.00160.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Martin, C., Patel, M., Williams, S., et al. (2018). Human breast milk-derived exosomes attenuate cell death in intestinal epithelial cells. Innate Immunity, 24, 278–284. https://doi.org/10.1177/1753425918785715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Leiferman, A., Shu, J., Grove, R., et al. (2018). A diet defined by its content of bovine milk exosomes and their RNA cargos has moderate effects on gene expression, amino acid profiles and grip strength in skeletal muscle in C57BL/6 mice. Journal of Nutritional Biochemistry, 59, 123–128. https://doi.org/10.1016/j.jnutbio.2018.06.007

    Article  CAS  PubMed  Google Scholar 

  37. Kosaka, N., Izumi, H., Sekine, K., et al. (2010). microRNA as a new immune-regulatory agent in breast milk. Silence, 1, 7. https://doi.org/10.1186/1758-907X-1-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Benmoussa, A., Ly, S., Shan, S. T., et al. (2017). A subset of extracellular vesicles carries the bulk of microRNAs in commercial dairy cow’s milk. Journal of Extracell Vesicles, 6, 1401897. https://doi.org/10.1080/20013078.2017.1401897

  39. Svenningsen, P., Sabaratnam, R., & Jensen, B. L. (2020). Urinary extracellular vesicles: Origin, role as intercellular messengers and biomarkers; efficient sorting and potential treatment options. Acta Psychologica, 228, e13346. https://doi.org/10.1111/apha.13346

    Article  CAS  Google Scholar 

  40. Benmoussa, A., & Provost, P. (2019). Milk microRNAs in Health and disease. Comprehensive Reviews in Food Science and Food Safety, 18, 703–722. https://doi.org/10.1111/1541-4337.12424

    Article  CAS  PubMed  Google Scholar 

  41. Sanwlani, R., Fonseka, P., Chitti, S. V., et al. (2020) Milk-derived extracellular vesicles in inter-organism, cross-species communication and drug delivery. Proteomes, 8.https://doi.org/10.3390/proteomes8020011.

  42. Weiskirchen, R., Weiskirchen, S., & Tacke, F. (2019). Organ and tissue fibrosis: Molecular signals, cellular mechanisms and translational implications. Molecular Aspects of Medicine, 65, 2–15. https://doi.org/10.1016/j.mam.2018.06.003

    Article  CAS  PubMed  Google Scholar 

  43. Tong, L., Hao, H., Zhang, Z., et al. (2021). Milk-derived extracellular vesicles alleviate ulcerative colitis by regulating the gut immunity and reshaping the gut microbiota. Theranostics, 11, 8570–8586. https://doi.org/10.7150/thno.62046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Department of Medical Ultrastructure, School of Basic Medicine, and the Lab of Biomedical Electronic Microscopy of Higher Research Center, Central South University for assistance with TEM work.

Funding

This research was funded by the Natural Science Foundation of Hunan Province, grant number 2019JJ50936, 2019JJ50950, and the Youth Science Foundation of Xiangya Hospital, grant number 2019Q14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinfang Xiao.

Ethics declarations

Human subjects/informed consent statement

No human studies were carried out by the authors for this article.

Competing interests

The authors declare no competing interests.

Additional information

Communicated by Associate Editor Junjie Xiao oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Lu, X., Hu, J. et al. Bovine Milk Exosomes Alleviate Cardiac Fibrosis via Enhancing Angiogenesis In Vivo and In Vitro. J. of Cardiovasc. Trans. Res. 15, 560–570 (2022). https://doi.org/10.1007/s12265-021-10174-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-021-10174-0

Keywords

Navigation