Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

STEM CELL BIOLOGY

Chromatin remodeling subunit BRM and valine regulate hematopoietic stem/progenitor cell function and self-renewal via intrinsic and extrinsic effects

Abstract

Little is known of hematopoietic stem (HSC) and progenitor (HPC) cell self-renewal. The role of Brahma (BRM), a chromatin remodeler, in HSC function is unknown. Bone marrow (BM) from Brm−/− mice manifested increased numbers of long- and short-term HSCs, GMPs, and increased numbers and cycling of functional HPCs. However, increased Brm−/− BM HSC numbers had decreased secondary and tertiary engraftment, suggesting BRM enhances HSC self-renewal. Valine was elevated in lineage negative Brm−/− BM cells, linking intracellular valine with Brm expression. Valine enhanced HPC colony formation, replating of human cord blood (CB) HPC-derived colonies, mouse BM and human CB HPC survival in vitro, and ex vivo expansion of normal mouse BM HSCs and HPCs. Valine increased oxygen consumption rates of WT cells. BRM through CD98 was linked to regulated import of branched chain amino acids, such as valine, in HPCs. Brm−/− LSK cells exhibited upregulated interferon response/cell cycle gene programs. Effects of BRM depletion are less apparent on isolated HSCs compared to HSCs in the presence of HPCs, suggesting cell extrinsic effects on HSCs. Thus, intracellular valine is regulated by BRM expression in HPCs, and the BRM/valine axis regulates HSC and HPC self-renewal, proliferation, and possibly differentiation fate decisions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Increased hematopoietic stem cell (HSC) numbers in Brm-/- mouse bone marrow (BM).
Fig. 2: Diminished self-renewal capacity of HSCs from Brm−/− mice following serial transplantation into secondary and tertiary irradiated mouse recipients.
Fig. 3: Metabolic profiling of lin BM cells of WT and Brm−/− mice.
Fig. 4: Effects of control diluent, valine or leucine and non-dialyzed (normal) or dialyzed FBS on primary HPC colony formation of normal mouse BM and human CB CD34+ cells.
Fig. 5: Human CB secondary colony formation, and mouse BM HPC survival.
Fig. 6: Valine stimulates respiration in lin WT BM cells.
Fig. 7: Brm−/− LSK exhibit a transcriptomic profile showing enriched interferon response and cell cycle genes.
Fig. 8: Populations of Brm−/− HPC exert cell extrinsic effects on HSC while valine treatment induces cell intrinsic effects.

Similar content being viewed by others

References

  1. Miyamoto K, Araki KY, Naka K, Arai F, Takubo K, Yamazaki S, et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell. 2007;1:101–12.

    Article  CAS  PubMed  Google Scholar 

  2. Shaheen M, Broxmeyer HE. Cytokine/receptor families and signal transduction. In: Hoffman R, Benz E, Silberstein LE, Heslop H, Weitz J, Anastasi J (eds). Hematology: basic principles and practice. 7th ed. Elsevier, Philadelphia, 2017. pp. 163–75.

  3. S Shaheen M, Broxmeyer HE. Principles of cytokine signaling. In: Hoffman R, Benz E, Silberstein LE, Heslop H, Weitz J, Anastasi J (eds). Hematology: basic principles and practice. 6th ed. Elsevier Saunders, Philadelphia, 2013. pp. 136–46.

  4. Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature. 2014;505:327–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zon LI. Intrinsic and extrinsic control of haematopoietic stem-cell self-renewal. Nature. 2008;453:306–13.

    Article  CAS  PubMed  Google Scholar 

  6. Broxmeyer HE, Lee M-R, Hangoc G, Cooper S, Prasain N, Kim Y-J, et al. Hematopoietic stem/progenitor cells, generation of induced pluripotent stem cells, and isolation of endothelial progenitors from 21- to 23.5-year cryopreserved cord blood. Blood. 2011;117:4773–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carow CE, Hangoc G, Broxmeyer HE. Human multipotential progenitor cells (CFU-GEMM) have extensive replating capacity for secondary CFU-GEMM: an effect enhanced by cord blood plasma. Blood. 1993;81:942–9.

    Article  CAS  PubMed  Google Scholar 

  8. Carow CE, Hangoc G, Cooper SH, Williams DE, Broxmeyer HE. Mast cell growth factor (c-kit ligand) supports the growth of human multipotential progenitor cells with a high replating potential. Blood. 1991;78:2216–21.

    Article  CAS  PubMed  Google Scholar 

  9. Kwon CS, Wagner D. Unwinding chromatin for development and growth: a few genes at a time. Trends Genet. 2007;23:403–12.

    Article  CAS  PubMed  Google Scholar 

  10. Muchardt C, Yaniv M. When the SWI/SNF complex remodels…the cell cycle. Oncogene. 2001;20:3067–75.

    Article  CAS  PubMed  Google Scholar 

  11. Hargreaves DC, Crabtree GR. ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res. 2011;21:396–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yoo AS, Crabtree GR. ATP-dependent chromatin remodeling in neural development. Curr Opin Neurobiol. 2009;19:120–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Raab JR, Runge JS, Spear CC, Magnuson T. Co-regulation of transcription by BRG1 and BRM, two mutually exclusive SWI/SNF ATPase subunits. Epigenetics Chromatin. 2017;10:62.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sif S, Saurin AJ, Imbalzano AN, Kingston RE. Purification and characterization of mSin3A-containing Brg1 and hBrm chromatin remodeling complexes. Genes Dev. 2001;15:603–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stanton BZ, Hodges C, Calarco JP, Braun SMG, Ku WL, Kadoch C, et al. Smarca4 ATPase mutations disrupt direct eviction of PRC1 from chromatin. Nat Genet. 2017;49:282–8.

    Article  CAS  PubMed  Google Scholar 

  16. Wong AK, Shanahan F, Chen Y, Lian L, Ha P, Hendricks K, et al. BRG1, a component of the SWI-SNF complex, is mutated in multiple human tumor cell lines. Cancer Res. 2000;60:6171–7.

    CAS  PubMed  Google Scholar 

  17. Bottardi S, Ross J, Pierre-Charles N, Blank V, Milot E. Lineage-specific activators affect beta-globin locus chromatin in multipotent hematopoietic progenitors. EMBO J. 2006;25:3586–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bultman S, Gebuhr T, Yee D, Mantia CL, Nicholson J, Gilliam A, et al. A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol Cell. 2000;6:1287–95.

    Article  CAS  PubMed  Google Scholar 

  19. Griffin CT, Brennan J, Magnuson T. The chromatin-remodeling enzyme BRG1 plays an essential role in primitive erythropoiesis and vascular development. Development. 2008;135:493–500.

    Article  CAS  PubMed  Google Scholar 

  20. Kidder BL, Palmer S, Knott JG. SWI/SNF-Brg1 regulates self-renewal and occupies core pluripotency-related genes in embryonic stem cells. Stem Cells. 2009;27:317–28.

    Article  CAS  PubMed  Google Scholar 

  21. Singhal N, Esch D, Stehling M, Scholer HR. BRG1 is required to maintain pluripotency of murine embryonic stem cells. Biores Open Access. 2014;3:1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Reyes JC, Barra J, Muchardt C, Camus A, Babinet C, Yaniv M. Altered control of cellular proliferation in the absence of mammalian brahma (SNF2alpha). EMBO J. 1998;17:6979–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Naidu SR, Love IM, Imbalzano AN, Grossman SR, Androphy EJ. The SWI/SNF chromatin remodeling subunit BRG1 is a critical regulator of p53 necessary for proliferation of malignant cells. Oncogene. 2009;28:2492–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kadam S, Emerson BM. Transcriptional specificity of human SWI/SNF BRG1 and BRM chromatin remodeling complexes. Mol Cell. 2003;11:377–89.

    Article  CAS  PubMed  Google Scholar 

  25. Filippi MD, Ghaffari S. Mitochondria in the maintenance of hematopoietic stem cells: new perspectives and opportunities. Blood. 2019;133:1943–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mantel CR, O’Leary HA, Chitteti BR, Huang X, Cooper S, Hangoc G, et al. Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen shock. Cell. 2015;161:1553–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Snoeck HW. Mitochondrial regulation of hematopoietic stem cells. Curr Opin Cell Biol. 2017;49:91–8.

    Article  CAS  PubMed  Google Scholar 

  28. Gan B, Hu J, Jiang S, Liu Y, Sahin E, Zhuang L, et al. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature. 2010;468:701–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gurumurthy S, Xie SZ, Alagesan B, Kim J, Yusuf RZ, Saez B, et al. The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature. 2010;468:659–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Harper AE, Miller RH, Block KP. Branched-chain amino acid metabolism. Annu Rev Nutr. 1984;4:409–54.

    Article  CAS  PubMed  Google Scholar 

  31. Nakada D, Saunders TL, Morrison SJ. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature. 2010;468:653–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Taya Y, Ota Y, Wilkinson AC, Kanazawa A, Watarai H, Kasai M, et al. Depleting dietary valine permits nonmyeloablative mouse hematopoietic stem cell transplantation. Science. 2016;354:1152–5.

    Article  CAS  PubMed  Google Scholar 

  33. Honda M, Takehana K, Sakai A, Tagata Y, Shirasaki T, Nishitani S, et al. Malnutrition impairs interferon signaling through mTOR and FoxO pathways in patients with chronic Hepatitis C. Gastroenterology. 2011;141:128–e2.

    Article  CAS  PubMed  Google Scholar 

  34. Broxmeyer HE, Christopherson K, Hangoc G, Cooper S, Mantel C, Renukaradhya GJ, et al. CD1d expression on and regulation of murine hematopoietic stem and progenitor cells. Blood. 2012;119:5731–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Broxmeyer HE, Hangoc G, Cooper S, Ribeiro RC, Graves V, Yoder M, et al. Growth characteristics and expansion of human umbilical cord blood and estimation of its potential for transplantation in adults. PNAS. 1992;89:4109–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yu RY, Wang X, Pixley FJ, Yu JJ, Dent AL, Broxmeyer HE, et al. BCL-6 negatively regulates macrophage proliferation by suppressing autocrine IL-6 production. Blood. 2005;105:1777–84.

    Article  CAS  PubMed  Google Scholar 

  37. Broxmeyer HE, Hoggatt J, O’Leary HA, Mantel C, Chitteti BR, Cooper S, et al. Dipeptidylpeptidase 4 negatively regulates colony-stimulating factor activity and stress hematopoiesis. Nat Med. 2012;18:1786–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kanai Y, Segawa H, Miyamoto K, Uchino H, Takeda E, Endou H. Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J Biol Chem. 1998;273:23629–32.

    Article  CAS  PubMed  Google Scholar 

  39. Meier C, Ristic Z, Klauser S, Verrey F. Activation of system L heterodimeric amino acid exchangers by intracellular substrates. EMBO J. 2002;21:580–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Soga T, Heiger DN. Amino acid analysis by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem. 2000;72:1236–41.

    Article  CAS  PubMed  Google Scholar 

  41. Soga T, Ohashi Y, Ueno Y, Naraoka H, Tomita M, Nishioka T. Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J Proteome Res. 2003;2:488–94.

    Article  CAS  PubMed  Google Scholar 

  42. Soga T, Ueno Y, Naraoka H, Ohashi Y, Tomita M, Nishioka T. Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem. 2002;74:2233–9.

    Article  CAS  PubMed  Google Scholar 

  43. Overmyer KA, Evans CR, Qi NR, Minogue CE, Carson JJ, Chermside-Scabbo CJ, et al. Maximal oxidative capacity during exercise is associated with skeletal muscle fuel selection and dynamic changes in mitochondrial protein acetylation. Cell Metab. 2015;21:468–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120:483–95.

    Article  CAS  PubMed  Google Scholar 

  45. Anso E, Weinberg SE, Diebold LP, Thompson BJ, Malinge S, Shumacker PT, et al. The mitochondrial respiratory chain is essential for haematopoietic stem cell function. Nat Cell Biol. 2017;19:614–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ito K, Turcotte R, Cui J, Zimmerman SE, Pinho S, Mizoguchi T, et al. Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance. Science. 2016;354:1156–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Luchsinger LL, de Almeida MJ, Corrigan DJ, Mumau M, Snoeck HW. Mitofusin 2 maintains haematopoietic stem cells with extensive lymphoid potential. Nature. 2016;529:528–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mohrin M, Shin J, Liu Y, Brown K, Luo H, Xi Y, et al. Stem cell aging. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science. 2015;347:1374–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

These studies were supported by the Public Health Service Grants from the NIH to HEB: R35 HL139599 (Outstanding Investigator Award), R01 DK109188, and U54 DK106846. JR was supported as a postdoctoral fellow by NIH T32 DK007519 (PI HEB). We thank Dr. Ching-Pin Chang for Brm−/− mice.

Author information

Authors and Affiliations

Authors

Contributions

SRN conceived the project idea and hypothesized the stem cell phenotype in Brm−/− mice, performed metabolism experiments and connected BRM to intracellular valine. MC and SC performed and analyzed in vitro and ex vivo assays characterizing BRM and valine regulation of HSC/HPC including colony assays, phenotyping and expansion assays. MC, SC, and JR performed in vivo analyses of BRM and valine regulation of HSC/HPC. JR performed and analyzed RNA-sequencing and CD98 expression analyses. JR and MC interpreted data and hypothesized the working model connecting valine to BRM in HSC/HPC mechanistically and MC, JR, and SC designed and performed the ex vivo and in vivo experiments to validate this model. XH assisted and performed OCR experiments. SRN, MC, JR, and HEB wrote the paper and drafts of the paper were evaluated by all co-authors. HEB designed experiments, scored colony assays, supervised the study, and acquired funding.

Corresponding authors

Correspondence to Samisubbu R. Naidu or Hal E. Broxmeyer.

Ethics declarations

Competing interests

HEB is on the Scientific Advisory Board of Elixell Corp, a stem cell company. None of the other authors have conflicts of interest to disclose.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naidu, S.R., Capitano, M., Ropa, J. et al. Chromatin remodeling subunit BRM and valine regulate hematopoietic stem/progenitor cell function and self-renewal via intrinsic and extrinsic effects. Leukemia 36, 821–833 (2022). https://doi.org/10.1038/s41375-021-01426-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-021-01426-8

This article is cited by

Search

Quick links