Library Subscription: Guest
Critical Reviews™ in Therapeutic Drug Carrier Systems

Published 6 issues per year

ISSN Print: 0743-4863

ISSN Online: 2162-660X

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 3.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.8 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00023 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.39 SJR: 0.42 SNIP: 0.89 CiteScore™:: 5.5 H-Index: 79

Indexed in

Understanding Nanotechnology in the Treatment of Oral Cancer: A Comprehensive Review

Volume 38, Issue 6, 2021, pp. 1-48
DOI: 10.1615/CritRevTherDrugCarrierSyst.2021036437
Get accessDownload

ABSTRACT

Oral cancer is the 11th most common cancer in the world with a high morbidity rate. Various conventional therapies have been used for the treatment of oral cancer such as surgery, radiotherapy, and chemotherapy used either alone or in combination but these have many limitations, making them unsuitable for treating oral cancer. Nanotechnology has been emerged out as an innovative tool in the field of oral cancer which has proved to provide effective results overcoming the limitations of conventional drug therapies. This system involves a nanoparticle drug delivery system based on a targeted therapy in which therapeutic drugs or agents act on the targeted cells without affecting normal healthy cells. Literature has shown that several nanoparticles, organic and inorganic nanoparticles, have been used as the drug delivery system in different types of oral cancers such as oral squamous cell carcinoma, cancer of the tongue, head, and neck cancers. Drugs like cisplatin, 5-fluorouracil, methotrexate, doxorubicin, etc., when coated with nano-polymers have shown better results compared with conventional drugs in oral cancer. Other nanoparticles such as liposomes, hydrogels, nanodiamonds, carbon rods, etc. have also been used with minimal side effects. This paper aims to review and discuss various nanotechnology systems in the field of oral cancer and to evaluate the efficacy of these systems in treating oral cancer compared with conventional drug delivery methods.

REFERENCES
  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2014;136(5):E359-86.

  2. Natarajan E, Eisenberg E. Contemporary concepts in the diagnosis of oral cancer and precancer. Dent Clin North Am. 2011;55(1):63-88.

  3. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424.

  4. Sankaranarayanan R, Ramadas K, Thomas G, Muwonge R, Thara S, Mathew B, Rajan B, Trivendrum Oral Cancer Screening Group. Effect of screening on oral cancer mortality in Kerala, India: A cluster-randomised controlled trial. Lancet. 2005;365(9475):1927-33.

  5. Ramalingam K, Poonia M, Goyal S, Sidhu S. Nanotechnology in oral cancer: A comprehensive review. J Oral Maxillofac Pathol. 2017;21(3):407.

  6. Gharat SA, Momin M, Bhavsar C. Oral squamous cell carcinoma: Current treatment strategies and nanotechnology-based approaches for prevention and therapy. Crit Rev Ther Drug Carr Syst. 2016;33(4):363-400.

  7. Ashfaq UA, Riaz M, Yasmeen E, Yousaf MZ. Recent advances in nanoparticle-based targeted drug-delivery systems against cancer and role of tumor microenvironment. Crit Rev Ther Drug Carrier Syst. 2017;34(4):317-53.

  8. Ozak ST, Ozkan P. Nanotechnology and dentistry. Eur J Dent. 2013;7:145-51.

  9. N. Taniguchi. On the basic concept of nano-technology. Proceedings of International Conference on Production Engineering. Tokyo, Japan: Japan Society of Precision Engineering; 1974.

  10. Ramos AP, Cruz MAE, Tovani CB, Ciancaglini P. Biomedical applications of nanotechnology. Biophys Rev. 2017;9(2):79-89.

  11. Stephen BJ, Suchanti S, Mishra R, Singh A. Cancer nanotechnology in medicine: A promising approach for cancer detection and diagnosis. Crit Rev Ther Drug Carr Syst. 2020;37(4):375-405.

  12. Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioeng Transl Med. 2016;1(1):10-29.

  13. Roco MC. Nanoscale science and engineering: Unifying and transforming tools. AIChE J. 2004;50(5):890-7.

  14. Zhu Y, Wen IM, Li R, Dong W, Jia SY, Qi MC. Recent advances of nano-drug delivery system in oral squamous cell carcinoma treatment. Eur Rev Med Pharmacol Sci. 2019;23:9445-53.

  15. Garcia SA, Weitz J, Scholch S. Circulating tumor cells. Methods Mol Biol. 2018;1692:213-9.

  16. Arap W. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science. 1998;279(5349):377-80.

  17. Hu C-MJ, Aryal S, Zhang L. Nanoparticle-assisted combination therapies for effective cancer treatment. Ther Deliv. 2010;1(2):323-34.

  18. Li R, Wang Y, Du J, Wang X, Duan A, Gao R, Liu J, Li B. Graphene oxide loaded with tumor-targeted peptide and anti-cancer drugs for cancer target therapy. Sci Rep. 2021;11(1):1725.

  19. Son KH, Hong JH, Lee JW. Carbon nanotubes as cancer therapeutic carriers and mediators. Int J Nanomedicine. 2016;11:5163-85.

  20. Li C, Shuford KL, Park Q-H, Cai W, Li Y, Lee EJ, Cho SO. High-yield synthesis of single-crystalline gold nano-octahedra. Angew Chem Int Ed Engl. 2007;46(18):3264-8.

  21. Granqvist CG, Buhrman RA. Ultrafine metal particles. J Appl Phys. 1976;47(5):2200-19.

  22. Chivere VT, Kondiah PPD, Choonara YE, Pillay V. Nanotechnology-based biopolymeric oral delivery platforms for advanced cancer treatment. Cancers. 2020;12(2):522.

  23. Jain AK, Das M, Swarnakar NK, Jain S. Engineered plga nanoparticles: An emerging delivery tool in cancer therapeutics. Crit Rev Ther Drug Carr Syst. 2011;28(1):1-45.

  24. Ketabat F, Pundir M, Mohabatpour F, Lobanova L, Koutsopoulos S, Hadjiiski L, Chen X, Papagerakis S. Controlled drug delivery systems for oral cancer treatment-current status and future perspectives. Pharmaceutics. 2019;11(7):302.

  25. Kavitha K, Srinivasa RA, Nalini CN. An investigation on enhance-ment of solubility of 5-fluorouracil by applying complexation technique - characterization, dissolution and molecular-modeling studies. J Applied Pharm Sci. 2013;3:162-6.

  26. Sher F, Iqbal S, Jubeen F. Future of 5-fluorouracil in cancer therapeutics, current pharmacokinetics issues and a way forward. J Cancer Res Pract. 2019;6(4):155.

  27. Astolfi L, Ghiselli S, Guaran V, Chicca M, Simoni E, Olivetto E, Lelli G, Martini A. Correlation of adverse effects of cisplatin administration in patients affected by solid tumours: A retrospective evaluation. Oncol Rep. 2013;29(4):1285-92.

  28. Endo K, Ueno T, Kondo S, Wakisaka N, Murono S, Ito M, Katoaka K, Kato Y, Yoshizaki T. Tumor-targeted chemotherapy with the nanopolymer-based drug NC-6004 for oral squamous cell carcinoma. Cancer Sci. 2013;104(3):369-74.

  29. Abolmaali SS, Tamaddon AM, Dinarvand R. A review of therapeutic challenges and achievements of methotrexate delivery systems for treatment of cancer and rheumatoid arthritis. Cancer Chemother Pharmacol. 2013;71(5):1115-30.

  30. Khan ZA, Tripathi R, Mishra B. Methotrexate: A detailed review on drug delivery and clinical aspects. Expert Opin Drug Deliv. 2012;9(2):151-69.

  31. Ashrafizadeh M, Ahmadi Z, Mohamadi N, Zarrabi A, Abasi S, Dehghannoudeh G, Tamaddondoust RN, Khanbabaei H, Mohammadinejad R, Thakur VK. Chitosan-based advanced materials for docetaxel and paclitaxel delivery: Recent advances and future directions in cancer theranostics. Int J Biol Macromol. 2020;145:282-300.

  32. Carvalho C, Santos R, Cardoso S, Correia S, Oliveira P, Santos M, Moreira PI. Doxorubicin: The good, the bad and the ugly effect. Curr Med Chem. 2009;16(25):3267-85.

  33. Chang PY, Peng SF, Lee CY, Lu CC, Tsai SC, Shieh TM, Wu TS, Tu MG, Chen MY, Yang JS. Curcumin-loaded nanoparticles induce apoptotic cell death through regulation of the function of MDR1 and reactive oxygen species in cisplatin-resistant CAR human oral cancer cells. Int J Oncol. 2013;43(4):1141-50.

  34. Maggioni D, Nicolini G, Rigolio R, Biffi L, Pignataro L, Gaini R, Garavello W. Myricetin and naringenin inhibit human squamous cell carcinoma proliferation and migration in vitro. Nutr Cancer. 2014;66(7):1257-67.

  35. Sulfikkarali N, Krishnakumar N, Manoharan S, Nirmal RM. Chemopreventive efficacy of naringenin-loaded nanoparticles in 7,12-dimethylbenz (a)anthracene induced experimental oral carcinogenesis. Pathol Oncol Res. 2012;19(2):287-96.

  36. Li P, Zhou G, Zhu X, Li G, Yan P, Shen L, Xu Q, Hamblin MR. Verna JM. Photodynamic therapy with hyperbranched poly(ether-ester) chlorin(e6) nanoparticles on human tongue carcinoma CAL-27 cells. Photodiagnosis Photodyn Ther. 2012;9(1):76-82.

  37. Craperi D, Vicat J-M, Nissou M-F, Mathieu J, Baudier J, Benabid AL, Verna JM. Increased bax expression is associated with cell death induced by ganciclovir in a herpes thymidine kinase gene-expressing glioma cell line. Hum Gene Ther. 1999;10(4):679-88.

  38. Wang J, Lu X-X, Chen D-Z, Li S-F, Zhang L-S. Herpes simplex virus thymidine kinase and ganciclovir suicide gene therapy for human pancreatic cancer. World J Gastroenterol. 2004;10(3):400.

  39. Yu D, Wang A, Huang H, Chen Y. PEG-PBLG nanoparticle-mediated HSV-TK/GCV gene therapy for oral squamous cell carcinoma. Nanomed. 2008;3(6):813-21.

  40. Neves SS, Sarmento-Ribeiro AB, Simoes SP, de Lima MCP. Transfection of oral cancer cells mediated by transferrin-associated lipoplexes: Mechanisms of cell death induced by herpes simplex virus thymidine kinase/ganciclovir therapy. Biochim Biophys Acta. 2006;1758(11):1703-12.

  41. Mohammadi-Samani S, Ghasemiyeh P. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res Pharm Sci. 2018;13(4):288.

  42. Khosa A, Reddi S, Saha RN. Nanostructured lipid carriers for site-specific drug delivery. Biomed Pharmacother. 2018;103:598-613.

  43. Pawar HR, Bhosale SS, Derle ND. Use of liposomes in cancer therapy: A review. Int J Pharm Sci. 2012;3:3585-90.

  44. Moghimipour E, Handali S. Liposomes as drug delivery systems: Properties and applications. Res J Pharm Biol Chem Sci. 2013;4(1)169-85.

  45. Nekkanti V, Kalepu S. Recent advances in liposomal drug delivery: A review. Pharm Nanotechnol. 2015;3(1):35-55.

  46. Brandl M. Liposomes as drug carriers: A technological approach. Biotechnol Annu Rev. 2001;7:59-85.

  47. Libanov AL, Maruyama K, Torchilin VP, Huang L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 1990;268(1):235-7.

  48. Allen TM, Hansen CB, Peliowski A. Subcutaneous administration of sterically stabilized (stealth) liposomes is an effective sustained release system for 1-β-d-arabinofuranosylcytosine. Drug Deliv. 1993;1(1):55-60.

  49. Nekkanti V, Kalepu S. Recent Advances in liposomal drug delivery: A review. Pharm Nanotechnol. 2015;3(1):35-55.

  50. Pawar H, Bhosale S, Derle N. Use of liposomes in cancer therapy: A review. Int J Pharm Sci. 2012;3:3585.

  51. Mohan A, Narayanan S, Sethuraman S, Krishnan UM. Novel resveratrol and 5-fluorouracil coencapsulated in pegylated nanoliposomes improve chemotherapeutic efficacy of combination against head and neck squamous cell carcinoma. BioMed Res Int. 2014;2014:1-14.

  52. Harrington KJ, Rowlinson-Busza G, Uster PS, Stewart JS. Pegylated liposome-encapsulated doxorubicin and cisplatin in the treatment of head and neck xenograft tumours. Cancer Chemother Pharmacol. 2000;46(1):10-8.

  53. Elzoghby AO, Samy WM, Elgindy NA. Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release. 2012;157(2):168-82.

  54. Cui M, Naczynski DJ, Zevon M, Griffith CK, Sheihet L, Poventud-Fuentes I, Chen S, Roth CM, Moghe PV. Multifunctional albumin nanoparticles as combination drug carriers for intra-tumoral chemotherapy. Adv Healthc Mater. 2013;2(9):1236-45.

  55. Patel DJ, Mistri PA, Prajapati JJ. Treatment of cancer by using nanoparticles as a drug delivery. Int J Drug Dev Res. 2012;4(1):14-27.

  56. Xiong Z, Shen M, Shi X. Dendrimer-based strategies for cancer therapy: Recent advances and future perspectives. Sci China Mater. 2018;61(11):1387-403.

  57. Jiang L, Zhou S, Zhang X, Wu W, Jiang X. Dendrimer-based nanoparticles in cancer chemotherapy and gene therapy. Sci China Mater. 2018;61(11):1404-19.

  58. Giri TK, Thakur A, Alexander A, Ajazuddin, Badwaik H, Tripathi DK. Modified chitosan hydrogels as drug delivery and tissue engineering systems: Present status and applications. Acta Pharm Sin B. 2012;2(5):439-49.

  59. Keskin D, Tezcaner A. Micelles as delivery system for cancer treatment. Curr Pharm Des. 2018;23(35):5230-41.

  60. Zhu M, Chen S, Hua L, Zhang C, Chen M, Chen D, Dong Y, Zhang Y, Li M, Song X, Chen H, Zheng H. Self-targeted salinomycin-loaded DSPE-PEG-methotrexate nanomicelles for targeting both head and neck squamous cell carcinoma cancer cells and cancer stem cells. Nanomedicine. 2017;12(4):295-315.

  61. Wang ZQ, Liu K, Huo ZJ, Li XC, Wang M, Liu P, Pang B, Wang SH. A cell-targeted chemotherapeutic nanomedicine strategy for oral squamous cell carcinoma therapy. J Nanobiotechnology. 2015;13:63.

  62. Rajewski RA, Stella VJ. Pharmaceutical applications of cyclodextrins. 2. In vivo drug delivery. J Pharm Sci. 1996;85(11):1142-69.

  63. Vyas A, Saraf S, Saraf S. Cyclodextrin based novel drug delivery systems. J Incl Phenom Macrocycl Chem. 2008;62(1-2):23-42.

  64. Li W, Cao Z, Liu R, Liu L, Li H, Li X, Chen Y, Lu Cheng, Liu Y. AuNPs as an important inorganic nanoparticle applied in drug carrier systems. Artif Cells Nanomed Biotechnol. 2019;47(1):4222-33.

  65. Hainfeld JF, Lin L, Slatkin DN, Dilmanian FA, Vadas TM, Smilowitz HM. Gold nanoparticle hyperthermia reduces radiotherapy dose. Nanomed Nanotechnol Biol Med. 2014;10(8):1609-17.

  66. Hainfeld JF, Dilmanian FA, Zhong Z, Slatkin DN, Kalef-Ezra JA, Smilowitz HM. Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Phys Med Biol. 2010;55(11):3045-59.

  67. Asar SL, El-Sheikh SM, El-Didi FH, Essawy MM, Ramadan HS, Afifi MM. Therapeutic effect of Paclitaxel loaded on gold nanoparticles in treatment of induced oral squamous cell carcinoma. Alex Dent J. 2019;44(1):17-23.

  68. Kim G, Park SR, Kim GC, Lee JK. Targeted cancer treatment using anti-EGFR and -TFR antibody-conjugated gold nanoparticles stimulated by nonthermal air plasma. Plasma Med. 2011;1(1):45-54.

  69. Jain N, Jain R, Thakur N, Gupta BP, Jain DK, Banveer J. Nanotechnology: A safe and effective drug delivery system. Asian J Pharm Clin Res 2010;3:159-65.

  70. Yang X, Hong H, Grailer JJ, Rowland IJ, Javadi A, Hurley SA, Xiao Y, Yang Y, Zhang Y, Nickles RJ, Kai W, Steeber DA, Gong S. cRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials. 2011;32(17):4151-60.

  71. Bakhtiary Z, Saei AA, Hajipour MJ, Raoufi M, Vermesh O, Mahmoudi M. Targeted superparamagnetic iron oxide nanoparticles for early detection of cancer: Possibilities and challenges. Nanomed Nanotechnol Biol Med. 2016;12(2):287-307.

  72. Legge CJ, Colley HE, Lawson MA, Rawlings AE. Targeted magnetic nanoparticle hyperthermia for the treatment of oral cancer. J Oral Pathol Med. 2019;48(9):803-9.

  73. Jahanbani J, Ghotbi M, Shahsavari F, Seydi E, Rahimi S, Pourahmad J. Selective anticancer activity of superparamagnetic iron oxide nanoparticles (SPIONs) against oral tongue cancer using in vitro methods: The key role of oxidative stress on cancerous mitochondria. J Biochem Mol Toxicol. 2020;34 (10):e22557.

  74. Su Z, Liu D, Chen L, Zhang J, Ru L, Chen Z, Gao Z, Wang X. CD44-targeted magnetic nanoparticles kill head and neck squamous cell carcinoma stem cells in an alternating magnetic field. Int J Nanomedicine. 2019;14:7549-60.

  75. Wei L, Lu J, Xu H, Patel A, Chen ZS, Chen G. Silver nanoparticles: Synthesis, properties, and therapeutic applications. Drug Discov Today. 2015;20(5):595-601.

  76. Dziedzic A, Kubina R, Buldak R, Skonieczna M, Cholewa K. Silver nanoparticles exhibit the dose-dependent anti-proliferative effect against human squamous carcinoma cells attenuated in the presence of berberine. Molecules. 2016;21(3):365.

  77. Yakop F, Ghafar SAA, Yong YK, Yazan LS, Hanafiah RM, Lim V, Eshak Z. Silver nanoparticles Clinacanthus Nutans leaves extract induced apoptosis towards oral squamous cell carcinoma cell lines. Artif Cells Nanomed Biotechnol. 2018;46(Suppl 2):131-9.

  78. Pourbaghi-Masouleh M, Hosseini V. Amorphous calcium phosphate nanoparticles could function as a novel cancer therapeutic agent by employing a suitable targeted drug delivery platform. Nanoscale Res Lett. 2013;8(1):449.

  79. Kesse S, Boakye-Yiadom K, Ochete B, Opoku-Damoah Y, Akhtar F, Filli M, Farooq MA, Aquib M, Maviah Mily BJ, Murtaza G, Wang Bo. Mesoporous silica nanomaterials: Versatile nanocarriers for cancer theranostics and drug and gene delivery. Pharmaceutics. 2019;11(2):77.

  80. Liu Q, Xia W. Mesoporous silica nanoparticles for cancer therapy. In: Lee N, Cheng C, Luk J, editors. New advances on disease biomarkers and molecular targets in biomedicine. Totowa, NJ: Humana Press; 2013, p. 231-42.

  81. Tripisciano C, Rummeli MH, Chen X, Borowiak-Palen E. Multi-wall carbon nanotubes - A vehicle for targeted Irinotecan drug delivery. Phys Status Solidi B. 2010;247(11-12):2673-7.

  82. Mangla B, Javed S, Kohli K, Ahsan A, Ahsan W. Reassessment of therapeutic applications of carbon nanotubes: A majestic and futuristic drug carrier. Crit Rev Ther Drug Carr Syst. 2020;37(4):331-73.

  83. Tian Z, Yin M, Ma H, Zhu L, Shen H, Jia N. Supramolecular assembly and antitumor activity of multiwalled carbon nanotube-camptothecin complexes. J Nanosci Nanotechnol. 2011;11(2):953-8.

  84. Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X, Dai H. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res. 2008;68(16):6652-60.

  85. Malhotra R, Patel V, Vaque JP, Gutkind JS, Rusling JF. Ultrasensitive electrochemical immunosensor for oral cancer biomarker il-6 using carbon nanotube forest electrodes and multilabel amplification. Anal Chem. 2010;82(8):3118-23.

  86. Moon HK, Lee SH, Choi HC. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano. 2009;3(11):3707-13.

  87. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12):751-60.

  88. Brigitta L, Ratnesh J, Dandekar P, Thiele C, Yamada H, Babak M, Qiong L, Lehr C-M. Chances of nanomaterials for pharmaceutical applications. In: Luther W, editor. Safety aspects of engineered nanomaterials. Singapore: Pan Stanford; 2013. p. 279-317.

  89. Singh D, Dash K. Quantum dots: A diagnostic and therapeutic boon in oral cancer. Glob J Biosci Biotechnol. 2018;7(1):204-8.

  90. Ziober BL, Mauk MG, Falls EM, Chen Z, Ziober AF, Bau HH. Lab-on-a-chip for oral cancer screening and diagnosis. Head Neck. 2007;30(1):111-21.

  91. Mauk MG, Ziober BL, Chen Z, Thompson JA, Bau HH. Lab-on-a-Chip technologies for oral-based cancer screening and diagnostics: Capabilities, issues, and prospects. Ann N Y Acad Sci. 2007;1098(1):467-75.

  92. Wei Z, Yin X, Cai Y, Xu W, Song C, Wang Y, Zhang J, Kang A, Wang Z, Han Wei. Antitumor effect of a Pt-loaded nanocomposite based on graphene quantum dots combats hypoxia-induced chemoresistance of oral squamous cell carcinoma. Int J Nanomedicine. 2018;13:1505-24.

  93. Wei S, Li L, Du X, Li Y. OFF-ON nanodiamond drug platform for targeted cancer imaging and therapy. J Mater Chem B. 2019;7(21):3390-402.

  94. Zhao H, Feng H, Liu D, Liu J, Ji N, Chen F, Lou X, Zhou Y, Dan H, Zeng X, Li J, Meng J, Zu X, Zhou SM, Yang H, Li L, Liang X, Chu L, Jiang L, Yang H, Chen Q. Self-assembling monomeric nucleoside molecular nanoparticles loaded with 5-fu enhancing therapeutic efficacy against oral cancer. ACS Nano. 2015;9(10):9638-51.

  95. Li S, Wang A, Jiang W, Guan Z. Pharmacokinetic characteristics and anticancer effects of 5-Fluorouracil loaded nanoparticles. BMC Cancer. 2008;8:103.

  96. Endo K, Ueno T, Kondo S, Wakisaka N, Murono S, Ito M, Kataoka K, Kato Y, Yoshizaki T. Tumor-targeted chemotherapy with the nanopolymer-based drug NC-6004 for oral squamous cell carcinoma. Cancer Sci. 2013;104(3):369-74.

  97. Hackenberg S, Scherzed A, Harnisch W, Froelich K, Ginzkey C, Koehler C, Hagen R, Kleinsasser N. Antitumor activity of photo-stimulated zinc oxide nanoparticles combined with paclitaxel or cisplatin in HNSCC cell lines. J Photochem Photobiol B. 2012;114:87-93.

  98. Jin BZ, Dong XQ, Xu X, Zhang FH. Development and in-vitro evaluation of mucoadhesive patches of methotrexate for targeted delivery in oral cancer. Oncol Lett. 2018;15(2):2541-9.

  99. Nakakaji R, Umemura M, Mitsudo K, Kim JH, Hoshino Y, Sato I, Takatsugu M, Masahiro Y, Mitomu K, Toshiyuki K, Takayuki F, Utako Y, Masaki I, Motohiko S, Hiroshi S, Shoko M, Sayaka S, Ichio A, Haruki E, Iwai T, Yoshihiro. Treatment of oral cancer using magnetized paclitaxel. Oncotarget. 2018;9(21):15591-605.

  100. Fan L, Wang J, Xia C, Zhang Q, Pu Y, Chen L, Chen J, Wang Y. Glutathione-sensitive and folate-targeted nanoparticles loaded with paclitaxel to enhance oral squamous cell carcinoma therapy. J Mater Chem B. 2020;8(15):3113-22.

  101. Bharadwaj R, Sahu BP, Haloi J, Laloo D, Barooah P, Keppen C, Deka M, Medhi S. Combinatorial therapeutic approach for treatment of oral squamous cell carcinoma. Artif Cells Nanomed Biotechnol. 2019;47(1):571-84.

  102. Shi L, Song X-B, Wang Y, Wang K-T, Liu P, Pang B, Wei FC. Docetaxel-conjugated monomethoxy-poly(ethylene glycol)-b-poly(lactide) (mPEG-PLA) polymeric micelles to enhance the therapeutic efficacy in oral squamous cell carcinoma. RSC Adv. 2016;6(49):42819-26.

  103. Abbasi MM, Jahanban-Esfahlan R, Monfaredan A, Seidi K, Hamishehkar H, Khiavi MM. Oral and iv dosages of doxorubicin-methotrexate loaded-nanoparticles inhibit progression of oral cancer by down-regulation of matrix methaloproteinase 2 expression in vivo. Asian Pac J Cancer Prev. 2015;15(24):10705-11.

  104. Khiavi MM, Rostami A, Hamishekar H, Abassi MM, Aghbali A, Salehi R, Abdollahi B, Fatoohi S, Sina M. Therapeutic efficacy of orally delivered doxorubicin nanoparticles in rat tongue cancer induced by 4-nitroquinoline 1-oxide. Adv Pharm Bull. 2015;5(2):209-16.

  105. Srivastava S, Mohammad S, Pant AB, Mishra PR, Pandey G, Gupta S, Farooqui S. Co-delivery of 5-fluorouracil and curcumin nanohybrid formulations for improved chemotherapy against oral squamous cell carcinoma. J Maxillofac Oral Surg. 2018;17(4):597-610.

  106. Hu A, Huang JJ, Li RL, Lu ZY, Duan JL, Xu WH, Chen XP, Fan JP. Curcumin as therapeutics for the treatment of head and neck squamous cell carcinoma by activating SIRT1. Sci Rep. 2015;5:13429.

  107. Lai KC, Chueh FS, Hsiao YT, Cheng ZY, Lien JC, Liu KC, Peng SF, Chung JG. Gefitinib and curcumin-loaded nanoparticles enhance cell apoptosis in human oral cancer SAS cells in vitro and inhibit SAS cell xenografted tumor in vivo. Toxicol Appl Pharmacol. 2019;382:114734.

  108. Sulfikkarali N, Krishnakumar N, Manoharan S, Nirmal RM. Chemopreventive efficacy of naringenin-loaded nanoparticles in 7,12-dimethylbenz(a)anthracene induced experimental oral carcinogenesis. Pathol Oncol Res. 2012;19(2):287-96.

  109. Li P, Zhou G, Zhu X, Li G, Yan P, Shen L, Xu Q, Hamblin MR. Photodynamic therapy with hyperbranched poly(ether-ester) chlorin(e6) nanoparticles on human tongue carcinoma CAL-27 cells. Photodiagnosis Photodyn Ther. 2012;9(1):76-82.

  110. Kook MS, Lee CM, Jeong YI, Kim BH. Nanophotosensitizers for folate receptor-targeted and redox-sensitive delivery of chlorin E6 against cancer cells. Materials. 2020;13(12):2810.

  111. Arulmozhi V, Pandian K, Mirunalini S. Ellagic acid encapsulated chitosan nanoparticles for drug delivery system in human oral cancer cell line (KB). Colloids Surf B Biointerfaces. 2013;110:313-20.

  112. Lida S, Shimada J, Sakagami H. Cytotoxicity induced by docetaxel in human oral squamous cell carcinoma cell lines. In Vivo. 2013;27(3):321-32.

  113. Wang J-Y, Song Y-Q, Peng J, Luo H-L. Nanostructured lipid carriers delivering sorafenib to enhance immunotherapy induced by doxorubicin for effective esophagus cancer therapy. ACS Omega. 2020;5(36):22840-6.

  114. Konopka K, Fallah B, Monzon-Duller J, Overlid N, Duzgunes N. Serum-resistant gene transfer to oral cancer cells by Metafectene and GeneJammer: Application to HSV-tk/ganciclovir-mediated cytotoxicity. Cell Mol Biol Lett. 2005;10(3):455-70.

  115. Mohan A, Narayanan S, Balasubramanian G, Sethuraman S, Krishnan UM. Dual drug loaded nanoliposomal chemotherapy: A promising strategy for treatment of head and neck squamous cell carcinoma. Eur J Pharm Biopharm. 2016;99:73-83.

  116. Damascelli B, Patelli GL, Lanocita R, Tolla GD, Frigerio LF, Marchiano A, Garbagnati F, Spreafico C, Ticha V, Gladin CR, Palazzi M, Crippa F, Oldini C, Calo S, Bonarccosi A, Matavelli F, Costa L, Mariani L, Cantu G. A novel intraarterial chemotherapy using paclitaxel in albumin nanoparticles to treat advanced squamous cell carcinoma of the tongue: Preliminary findings. Am J Roentgenol. 2003;181(1):253-60.

  117. Wang Y, Xie D, Pan J, Xia C, Fan L, Pu Y, Zhang Q, Ni Y, Wang J, Hu Q. A near infrared light-triggered human serum albumin drug delivery system with coordination bonding of indocyanine green and cisplatin for targeting photochemistry therapy against oral squamous cell cancer. Biomater Sci. 2019;7(12):5270-82.

  118. Li Y, Li M, Yao G, Geng N, Xie Y, Feng Y, Zhang P, Kong X, Xue J, Cheng S, Zhou J, Xiao L. Telomerase inhibition strategies by siRNAs against either hTR or hTERT in oral squamous cell carcinoma. Cancer Gene Ther. 2011;18(5):318-25.

  119. Tekade RK, Dutta T, Gajbhiye V, Jain NK. Exploring dendrimer towards dual drug delivery: pH responsive simultaneous drug-release kinetics. J Microencapsul. 2009;26(4):287-96.

  120. Tauro JR, Gemeinhart RA. Extracellular protease activation of chemotherapeutics from hydrogel matrices: A new paradigm for local chemotherapy. Mol Pharm. 2005;2(5):435-8.

  121. Li J, Gong C, Feng X, Zhou X, Xu X, Xie L, Wang R, Zhang D, Wang H, Deng P, Zhou M, Ji N, Wang Y, Wang Z, Lia G, Geng N, Chu L, Qian Z, Wang Z, Chen Q. Biodegradable thermosensitive hydrogel for saha and ddp delivery: Therapeutic effects on oral squamous cell carcinoma xenografts. PLoS One. 2012;7(4):e33860.

  122. Ramineni SK, Cunningham LL, Dziubla TD, Puleo DA. Development of imiquimod-loaded mucoadhesive films for oral dysplasia. J Pharm Sci. 2013;102(2):593-603.

  123. Wang B, Wang J-H, Liu Q, Huang H, Chen M, Li K, Li C, Yu XF, Chu PK. Rose-bengal-conjugated gold nanorods for in vivo photodynamic and photothermal oral cancer therapies. Biomaterials. 2014;35(6):1954-66.

  124. El-Sayed IH, Huang X, El-Sayed MA. Surface plasmon resonance scattering and absorption of anti-egfr antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer. Nano Lett. 2005;5(5):829-34.

  125. Kah JC, Kho KW, Lee CG, James C, Sheppard R, Shen ZX, Soa KC, Olivo MC. Early diagnosis of oral cancer based on the surface plasmon resonance of gold nanoparticles. Int J Nanomed. 2007;2(4):785-98.

  126. Melancon MP, Lu W, Zhong M, Zhou M, Liang G, Elliott AM, Hazle JD, Myers JN, Li C, Stafford RJ. Targeted multifunctional gold-based nanoshells for magnetic resonance-guided laser ablation of head and neck cancer. Biomaterials. 2011;32(30):7600-8.

  127. Satapathy SR, Siddharth S, Das D, Nayak A, Kundu CN. Enhancement of cytotoxicity and inhibition of angiogenesis in oral cancer stem cells by a hybrid nanoparticle of bioactive quinacrine and silver: Implication of base excision repair cascade. Mol Pharm. 2015;12(11):4011-25.

  128. Barua S, Banerjee PP, Sadhu A, Sengupta A, Chatterjee S, Sarkar S, Barman S, Chattopadhay A, Battacharya S, Mondal NC, Karak N. Silver nanoparticles as antibacterial and anticancer materials against human breast, cervical and oral cancer cells. J Nanosci Nanotechnol. 2017;17(2):968-76.

  129. Chen WH, Lecaros RLG, Tseng YC, Huang L, Hsu YC. Nanoparticle delivery of HIF1α siRNA combined with photodynamic therapy as a potential treatment strategy for head-and-neck cancer. Cancer Lett. 2015;359(1):65-74.

  130. Wang D, Xu X, Zhang K, Sun B, Wang L, Meng L, Liu Q, Zheng C, Yang B, Sun H. Codelivery of doxorubicin and MDR1-siRNA by mesoporous silica nanoparticles-polymerpolyethylenimine to improve oral squamous carcinoma treatment. Int J Nanomedicine. 2017;13:187-98.

  131. Shi XL, Li Y, Zhao LM, Su LW, Ding G. Delivery of MTH1 inhibitor (TH287) and MDR1 siRNA via hyaluronic acid-based mesoporous silica nanoparticles for oral cancers treatment. Colloids Surf B Biointerfaces. 2019;173:599.

  132. Huang N, Wang H, Zhao J, Lui H, Korbelik M, Zeng H. Single-wall carbon nanotubes assisted photothermal cancer therapy: Animal study with a murine model of squamous cell carcinoma. Lasers Surg Med. 2010;42(9):798-808.

  133. Bhirde AA, Patel S, Sousa AA, Patel V, Molinolo AA, Ji Y, Leapman RD, Gutkind JS, Rusling JF. Distribution and clearance of PEG-single-walled carbon nanotube cancer drug delivery vehicles in mice. Nanomed. 2010;5(10):1535-46.

  134. Bhirde AA, Patel V, Gavard J, Zhang G, Sousa AA, Masedunskas A, Leapman RD, Weigert R, Gutkind JS, Rusling JF. Targeted killing of cancer cells in vivo and in vitro with egf-directed carbon nanotube-based drug delivery. ACS Nano. 2009;3(2):307-16.

  135. Yang K, Cao YA, Shi C, Li ZG, Zhang FJ, Yang J, Zhao C. Quantum dot-based visual in vivo imaging for oral squamous cell carcinoma in mice. Oral Oncol. 2010;46(12):864-8.

  136. Yen A, Zhang K, Daneshgaran G, Kim HJ, Ho DA. Chemopreventive nanodiamond platform for oral cancer treatment. J Calif Dent Assoc. 2016;44(2):121-7.

  137. ClinicalTrials.gov [Internet]: National Library of Medicine (US). Paclitaxel albumin-stabilized nanoparticle formulation and carboplatin followed by chemoradiation in treating patients with recurrent head and neck cancer; 2013 May 6 [cited 2021 July 10]. Available from: https://clinicaltrials.gov/ct2/show/NCT01847326.

  138. ClinicalTrials.gov [Internet]: National Library of Medicine (US). NBTXR3 and radiation therapy in treating patients with locally advanced SCC of the oral cavity or oropharynx; 2013 Sept 20 [cited 2021 July 10]. Available from: https://clinicaltrials.gov/ct2/show/NCT01946867.

  139. ClinicalTrials.gov [Internet]: National Library of Medicine (US). Therapeutic effect of luteolin natural extract versus its nanoparticles on tongue squamous cell carcinoma cell line; 2017 Sept 20 [cited 2021 July 10]. Available from: https://clinicaltrials.gov/ct2/show/NCT03288298.

  140. ClinicalTrials.gov [Internet]: National Library of Medicine (US). Nanoliposomal irinotecan in head and neck and esophagus after prior platinum-based chemotherapy or chemoradiotherapy; 2018 Oct 19 [cited 2021 July 10]. Available from: https://clinicaltrials.gov/ct2/show/NCT03712397.

  141. ClinicalTrials.gov [Internet]: National Library of Medicine (US). A study of bind-014 in patients with urothelial carcinoma, cholangiocarcinoma, cervical cancer and squamous cell carcinoma of the head and neck (iNSITE2); 2015 June 15 [cited 2021 July 10]. Available from: https://clinicaltrials.gov/ct2/show/NCT02479178.

  142. ClinicalTrials.gov [Internet]: National Library of Medicine (US). Neoadjuvant chemotherapy of nanoparticle albumin-bound paclitaxel in squamous cell carcinoma of esophagus; 2014 Jan 10 [cited 2021 July 10]. Available from: https://clinicaltrials.gov/ct2/show/NCT02033538.

  143. ClinicalTrials.gov [Internet]: National Library of Medicine (US). Ferumoxytol - iron oxide nanoparticle magnetic resonance dynamic contrast enhanced MRI; 2013 July 11 [cited 2021 July 10]. Available from: https://clinicaltrials.gov/ct2/show/NCT01895829.

  144. ClinicalTrials.gov [Internet]: National Library of Medicine (US). Induction chemotherapy with ACF followed by chemoradiation therapy for advanced head and neck cancer; 2012 March 19 [cited 2021 July 10]. Available from: https://clinicaltrials.gov/ct2/show/NCT01566435.

  145. ClinicalTrials.gov [Internet]: National Library of Medicine (US). Weekly nanoparticle albumin-bound paclitaxel (abraxane) + weekly cetuximab + radiation therapy (IMRT, intensity-modulated radiation therapy) in patients with stage III-IVB head and neck squamous cell carcinoma (HNSCC); 2008 Aug 18 [cited 2021 July 10]. Available from: https://clinicaltrials.gov/ct2/show/NCT00736619.

  146. ClinicalTrials.gov [Internet]: National Library of Medicine (US). Dose escalation study of mRNA-2752 for intratumoral injection to participants with advanced malignancies; 2018 Nov 14 [cited 2021 July 10]. Available from: https://clinicaltrials.gov/ct2/show/NCT03739931.

  147. ClinicalTrials.gov [Internet]: National Library of Medicine (US). Recombinant EphB4-HSA fusion protein with standard chemotherapy regimens in treating patients with advanced or metastatic solid tumors; 2015 July 13 [cited 2021 July 10]. Available from: https://clinicaltrials.gov/ct2/show/NCT02495896.

  148. ClinicalTrials.gov [Internet]: National Library of Medicine (US). Nab-paclitaxel, cisplatin, and cetuximab with concurrent radiation therapy for locally advanced head and neck cancer; 2009 Feb 26 [cited 2021 July 10]. Available from: https://clinicaltrials.gov/ct2/show/NCT00851877.

  149. ClinicalTrials.gov [Internet]: National Library of Medicine (US). Chemotherapy and locoregional therapy trial (surgery or radiation) for patients with head and neck cancer (OPTIMA-II); 2017 April 11 [cited 2021 July 10]. Available from: https://clinicaltrials.gov/ct2/show/NCT03107182.

  150. ClinicalTrials.gov [Internet]: National Library of Medicine (US). Efficacy and safety of preoperative Sintilimab plus Nab-paclitaxel and cisplatin in BR-ESCC patients; 2020 Sept 14 [cited 2021 July 10]. Available from: https://clinicaltrials.gov/ct2/show/NCT04548440.

  151. Clinicaltrialsregister.eu [Internet]: EU Clinical Trials Register. Validation of USPIO-enhanced MRI for detection of lymph node metastases in head and neck carcinoma: A pilot study; 2018 Dec 11 [cited 2021 July 12]. Available from: https://www.clinicaltrialsregister.eu/ctr-search/trial/2018-002168-14/NL.

  152. ClinicalTrials.gov [Internet]: National Library of Medicine (US). NC-6004 with 5-FU and cetuximab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck; 2017 April 12 [cited 2021 July 12]. Available from: https://clinicaltrials.gov/ct2/show/NCT03109158.

CITED BY
  1. Huang Mingshu, Huang Yisheng, Liu Hongyu, Tang Zhengming, Chen Yuanxin, Huang Zhijie, Xu Shuaimei, Du Jianzhong, Jia Bo, Hydrogels for the treatment of oral and maxillofacial diseases: current research, challenges, and future directions, Biomaterials Science, 2022. Crossref

  2. Bhattacharya Sankha, Theranostics and Nanoparticular Approaches for the Treatment of Oral Squamous Cell Carcinoma, Current Cancer Therapy Reviews, 18, 3, 2022. Crossref

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain