Skip to main content

Advertisement

Log in

Preparation and Characterization of Ibrutinib Amorphous Solid Dispersions: a Discussion of Interaction Force

  • Research Letter
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

The aim of this study was to improve the solubility and dissolution of Ibrutinib (IBR), a biopharmaceutical classification system (BCS) class II drug, by preparing binary and ternary amorphous solid dispersions (ASDs). The physicochemical properties of the ASD formulations were evaluated. Compared with crystalline IBR Form A, ASDs showed prominent improvement both in solubility and dissolution. The solubility and dissolution of IBR-HPMCAS (1:3) ASD were increased up to 9 times and 15 times than IBR Form A in the pH 6.8 buffer. Moreover, IBR-HPMCAS (1:3) ASD kept a stable amorphous state for 180 days under the accelerated stability condition (40 °C/75% RH). From Fourier Transform-Infrared spectra and ΔTg analysis, the possible hydrogen-bond interactions in IBR ASDs were pointed out to explain the improvement of solubility and stability. The results of this study demonstrated that ASD is a promising strategy to improve solubility and dissolution of poorly water soluble IBR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Akinleye A, Chen Y, Mukhi N, Song Y, Liu D. Ibrutinib and novel BTK inhibitors in clinical development. J Hematol Oncol. 2013;6:59–67. https://doi.org/10.1186/1756-8722-6-59.

    Article  CAS  Google Scholar 

  2. Jain P, Romaguera J, Srour S, Lee H, Hagemeister F, Westin J, Fayad L, Samaniego F, Badillo M, Zhang L, Nastoupil L, Kanagal-Shamanna R, Fowler N, Wang M. Four-year follow-up of a single arm, phase II clinical trial of ibrutinib with rituximab (IR) in patients with relapsed/refractory mantle cell lymphoma (MCL). Br J Haematol. 2018;182(3):404–11. https://doi.org/10.1111/bjh.15411.

    Article  CAS  Google Scholar 

  3. Paydas S. Management of adverse effects/toxicity of ibrutinib. Crit Rev Oncol Hematol. 2019;136:56–63. https://doi.org/10.1016/j.critrevonc.2019.02.001.

  4. Stella VJ, Nti-Addae KW. Prodrug strategies to overcome poor water solubility. Adv Drug Deliv Rev. 2007;59(7):677–94. https://doi.org/10.1016/j.addr.2007.05.013.

    Article  CAS  Google Scholar 

  5. Blagden N, Matas M, Gavan PT, York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev. 2007;59(7):617–30. https://doi.org/10.1016/j.addr.2007.05.011.

    Article  CAS  Google Scholar 

  6. Feng D, Peng T, Huang Z, Vikramjeet S, Shi Y, Wen T, Lu M, Quan G, Xin P, Wu C. Carrier(-)surfactant system based amorphous solid dispersion: precipitation inhibition and bioavailability enhancement of itraconazole. Pharmaceutics. 2018;10(2):53–67. https://doi.org/10.3390/pharmaceutics10020053.

    Article  CAS  Google Scholar 

  7. Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm. 2011;420(1):1–10. https://doi.org/10.1016/j.ijpharm.2011.08.032.

    Article  CAS  Google Scholar 

  8. Babu NJ, Nangia A. Solubility advantage of amorphous drugs and pharmaceutical cocrystals. Cryst Growth Des. 2011;11(7):2662–79. https://doi.org/10.1021/cg200492w.

  9. Williams HD, Trevaskis NL, Charman SA, Shanker MR, Charman WN. Strategies to address low drug solubility in discovery and development. Pharmacol Rev. 2013;65(1):315–499. https://doi.org/10.1124/pr.111.005660.

    Article  Google Scholar 

  10. Zhang Z, Chen Y, Deng J, Jia X, Zhou J, Lv H. Solid dispersion of berberine-phospholipid complex/TPGS 1000/SiO(2): preparation, characterization and in vivo studies. Int J Pharm. 2014;465(1–2):306–16. https://doi.org/10.1016/j.ijpharm.2014.01.023.

    Article  CAS  Google Scholar 

  11. Figueiredo CBM, Nadvorny D, Vieira A, Schver G, Soares M. Enhanced delivery of fixed-dose combination of synergistic antichagasic agents posaconazole-benznidazole based on amorphous solid dispersions. Eur J Pharm Sci. 2018;119:208–18. https://doi.org/10.1016/j.ejps.2018.04.024.

    Article  CAS  Google Scholar 

  12. Hussain A, Smith G, Khan KA, Irfan BN, Pedge NI, Irina E. Solubility and dissolution rate enhancement of ibuprofen by co-milling with carrieric excipients. Eur J Pharm Sci. 2018;123:395–403. https://doi.org/10.1016/j.ejps.2018.08.001.

    Article  CAS  Google Scholar 

  13. Zi P, Zhang C, Ju C, Su Z, Bao Y, Gao J, Sun J, Lu J, Zhang C. Solubility and bioavailability enhancement study of lopinavir solid dispersion matrixed with a carrieric surfactant - Soluplus. Eur J Pharm Sci. 2019;134:233–45. https://doi.org/10.1016/j.ejps.2019.04.022.

    Article  CAS  Google Scholar 

  14. Jermain SV, Brough C, Williams, Robert O. Amorphous solid dispersions and nanocrystal technologies for poorly water-soluble drug delivery — an update. Int J Pharm. 2018;535(1–2):379–92. https://doi.org/10.1016/j.ijpharm.2017.10.051.

  15. Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007;12(23–24):1068–75. https://doi.org/10.1016/j.drudis.2007.09.005.

    Article  CAS  Google Scholar 

  16. Bhardwaj SP, Arora KK, Kwong E, Templeton A, Clas SD, Suryanarayanan R. Mechanism of amorphous itraconazole stabilization in carrier solid dispersions: role of molecular mobility. Mol Pharm. 2014;11(11):4228–37. https://doi.org/10.1021/mp5004515.

    Article  CAS  Google Scholar 

  17. Zhang M, Suo Z, Peng X, Gan N, Li H. Microcrystalline cellulose as an effective crystal growth inhibitor for the ternary Ibrutinib formulation. Carbohydr Polym. 2020;229:115476. https://doi.org/10.1016/j.carbpol.2019.115476.

    Article  CAS  Google Scholar 

  18. Simoes MF, Nogueira BA, Tabanez AM, Fausto R, Pinto RMA, Simões S. Enhanced solid-state stability of amorphous ibrutinib formulations prepared by hot-melt extrusion. Int J Pharm. 2020;579:119156. https://doi.org/10.1016/j.ijpharm.2020.119156.

    Article  CAS  Google Scholar 

  19. Betageri GV, Makarla KR. Enhancement of dissolution of glyburide by solid dispersion and lyophilization techniques. Int J Pharmaceut. 1995;126(1–2):155–60. https://doi.org/10.1016/0378-5173(95)04114-1.

    Article  CAS  Google Scholar 

  20. Bavishi DD, Borkhataria CH. Spring and parachute: how cocrystals enhance solubility. Prog Cryst Growth Charact Mater. 2016;62(3):1–8. https://doi.org/10.1016/j.pcrysgrow.2016.07.001.

  21. Wei Y, Zhou S, Hao T, Zhang J, Gao Y. Further enhanced dissolution and oral bioavailability of docetaxel by coamorphization with a natural P-gp inhibitor myricetin. Eur J Pharm Sci. 2019;129:21–30. https://doi.org/10.1016/j.ejps.2018.12.016.

    Article  CAS  Google Scholar 

  22. Alshetaili AS, Ansari MJ, Anwer MK, Ganaie MA, Iqbal M, Alshahrani SM, Alalaiwe AS, Alsulays BB, Alshehri S, Sultan AS. Enhanced oral bioavailability of ibrutinib encapsulated poly (lactic-co-glycolic acid) nanoparticles: pharmacokinetic evaluation in rats. Curr Pharm Anal. 2019;15(6):661–8. https://doi.org/10.2174/1573412915666190314124932.

    Article  CAS  Google Scholar 

  23. Rangaraj N, Pailla SR, Chowta P, Sampathi S. Fabrication of ibrutinib nanosuspension by quality by design approach: intended for enhanced oral bioavailability and diminished fast fed variability. AAPS PharmSciTech. 2019;20(8):326–43. https://doi.org/10.1208/s12249-019-1524-7.

    Article  CAS  Google Scholar 

  24. Taniguchi C, Kawabata Y, Wada K, Yamada S, Onoue S. Microenvironmental pH-modification to improve dissolution behavior and oral absorption for drugs with pH-dependent solubility. Expert Opin Drug Deliv. 2014;11(4):505–16. https://doi.org/10.1517/17425247.2014.881798.

    Article  CAS  Google Scholar 

  25. Chen Z, Zhai J, Liu X, Mao S, Lu J. Solubility measurement and correlation of the form A of ibrutinib in organic solvents from 278.15 to 323.15 K. J Chem Thermodyn. 2016;103:342–48. https://doi.org/10.1016/j.jct.2016.08.034.

  26. Gordon M, Taylor JS. Ideal cocarriers and the second-order transitions of synthetic rubbers. i. non-crystalline cocarriers. J Appl Chem. 1952;2(9):493–500. https://doi.org/10.5254/1.3539818.

  27. Simha R, Boyer RF. On a general relation involving the glass temperature and coefficients of expansion of carriers. J Chem Phys. 1962;37(5):1003–7. https://doi.org/10.1063/1.1733201.

    Article  CAS  Google Scholar 

  28. Newman A, Reutzel-Edens SM, Zografi G. Coamorphous active pharmaceutical ingredient-small molecule mixtures: considerations in the choice of coformers for enhancing dissolution and oral bioavailability. J Pharm Sci. 2017;107(1):5–17. https://doi.org/10.1016/j.xphs.2017.09.024.

    Article  CAS  Google Scholar 

  29. Chen M, Zhang D, Dong W, Luo Z, Kang C, Li H, Wang G, Gong J. Amorphous and humidity caking: a review. Chin J Chem Eng. 2019;27(6):1429–38. https://doi.org/10.1016/j.cjche.2019.02.004.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Project 21606203 of the Natural Science Foundation of China. The authors offer their sincere thanks to Shengjie Song (Zhejiang University of Technology) for his assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangjun Shi.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Fan, B., Zhou, X. et al. Preparation and Characterization of Ibrutinib Amorphous Solid Dispersions: a Discussion of Interaction Force. J Pharm Innov 17, 1074–1083 (2022). https://doi.org/10.1007/s12247-021-09585-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-021-09585-y

Keywords

Navigation