Skip to main content
Log in

Study of the Behavior of Uranium, Niobium, and Tantalum in the Granite Melt–Fluoride Fluid System at 800–950°C, 2300 Bar

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

Experimental studies were carried out on the solubility of uranium, niobium, and tantalum in acidic melts of Li–F granites and predominantly fluoride fluids at 800–950°С and 2300 bar, in order to clarify the genesis of ores in the unique Mo–U Streltsovska ore field (Eastern Transbaikalia). The experiments were carried out with a model homogeneous glass with the composition (wt %): 72.18 SiO2, 12.19 Al2O3, 1.02 FeO, 0.2 MgO, 0.33 CaO, 4.78 Na2O, 3.82 K2O, 1.44 Li2O, 2.4 F (LiF, NaF, KF, CaF2, MgF2), synthetic uranium dioxide, and natural columbite. The initial solutions contained 3.85 wt % chlorides and 5–30 wt % fluorides (Na, K, Li, Al, Si). The fugacity of O2(H2) was set by Co–CoO buffers and an Ar–H2 mixture. The solubility of Nb in F–Cl solutions depended on the concentration of the fluorides in their composition and ranged from 10–4–10–3 mol kg–1 H2O at 800°C and 10–3-10–2 mol kg–1 H2O at 950°C, while Ta is practically insoluble in the investigated solutions. The solubility of U is 10–4–10–2 mol kg–1 H2O. Electron microscope analysis of the products of experiments established that columbite dissolved incongruently in a granite melt with the formation of U- and F-bearing pyrochlores. The interaction of high-fluoride solutions in the region of fluid immiscibility with a granite melt leads to enrichment of the granite with alkalis, uranium, and niobium without significant introduction of fluorine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Aleshin, A.P., Velichkin, V.I., and Krylova, T.L., Genesis and formation conditions of deposits in the unique Strel’tsovka molybdenum–uranium ore field: new mineralogical, geochemical, and physicochemical evidence, Geol. Ore Deposits, 2007, vol. 49, no. 5, pp. 392–412.

    Article  Google Scholar 

  2. Atencio, D., Andrade, M.B., Christy, A.G., Giere, R., and Kartashov, P.M., The pyrochlores supergroup of minerals: nomenclature, Can. Mineral., 2010, vol. 48, pp. 673–698.

    Article  Google Scholar 

  3. Blokhin, M.A. and Shveitser, I.G., Rentgenospektral’nyi spravochnik (X–Ray Spectral Reference Book), Moscow: Nauka, 1982.

  4. Calas, G., Etude experimentale du comportement de l’uranium dans les magmas, etats d’oxydation et de coordinance, Geochim. Cosmochim. Acta, 1979, vol. 43, pp. 1521–1531.

    Article  Google Scholar 

  5. Chabiron, A., Alyoshin, A.P., Cuney, M., Deloule, E., Golubev, V.N., Velitchkin, V.I., and Poty, B., Geochemistry of the rhyolitic magmas from the Streltsovka caldera (Transbaikalia, Russia): a melt inclusion study, Chem. Geol., 2001, vol. 175, pp. 273–290.

    Article  Google Scholar 

  6. Chabiron, A., Cuney, M., and Poty, B., Possible uranium sources for the largest uranium district associated with volcanism: the Streltsovka caldera (Transbaikalia, Russia), Mineral. Deposita, 2003, vol. 38, pp. 127–140.

    Article  Google Scholar 

  7. Chartrand, P. and Pelton, A.D., The modified quasi–chemical model: Part III. two sublattices, Metall. Mater. Trans. A., 2001, vol. 32A, pp. 1397–1407.

  8. Chevichelov, V.Yu., Bocharnikov, R.E., and Holtz, F., Partitioning of Cl and F between fluid and hydrous phonolitic melt of Mt. Vesuvius at ~850–1000°C and 200 MPa, Chem. Geol., 2008, vol. 256, pp. 172–184.

    Article  Google Scholar 

  9. Chevychelov, V.Yu., Distribution of Volatiles, Rock–Forming, and Ore Components in the Magmatic Systems: Experimental Studies, Extended Abstract of Doctoral (Geol.–Min) Dissertation, Moscow: IEM RAN, 2013.

  10. Chevychelov, V.Yu., and Epel’baum, M.B., Distribution of Pb, Zn, and major components in the granitic melt—fluid system, Ocherki fiziko–khimicheskoi petrologii (Essays on Physicochemical Petrology), Moscow: Nauka, 1985, vol.13, pp. 120–136.

    Google Scholar 

  11. Danielik, V. and Gabeova, J., Phase diagram of the system NaF–KF–AlF3, J. Therm. Anal. Calorim., 2004, vol. 76, pp. 763–773.

    Article  Google Scholar 

  12. Devyatova, V.N., Gramenitskii, E.N., and Shchekina, T.I., Phase relations in fluorine–bearing granite and nepheline syenite systems at 800°C and 1 kbar, Petrology, 2007, vol. 15, no. 1, pp. 19–34.

    Article  Google Scholar 

  13. Dingwell, D.B., Knoche, R., and Webb, S.L., The effect of F on the density of haplogranite melt, Am. Mineral., 1993, vol. 78, pp. 325–330.

    Google Scholar 

  14. Dolejš, D. and Baker, D.R., Liquidus equilibria in the system K2O–Na2O–Al2O3–SiO2–F2O–1–H2O to 100 MPa: I. Silicate–fluoride liquid immiscibility in anhydrous systems, J. Petrol., 2007, vol. 48, pp. 785–806.

    Article  Google Scholar 

  15. Hogarth, D.D., Classification and nomenclature of the pyrochlore group, Am. Mineral., 1977, vol. 62, pp. 403–410.

    Google Scholar 

  16. Kazanskii, V.I., Laverov, N.P., and Tugarinov, A.I., Evolyutsiya uranovogo rudoobrazovaniya (Evolution of the Uranium Ore Formation), Moscow: Atomizdat, 1978. 208 s.

  17. Keppler, H. and Wyllie, P.J., Role of fluids in transport and fractionation of uranium and thorium in magmatic processes, Nature, 1990, vol. 348, pp. 531–533.

    Article  Google Scholar 

  18. Keppler, H. and Wyllie, P.J., Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite–H2O–HCl and haplogranite–H2O–HF, Contrib. Mineral. Petrol., 1991, vol. 109, pp. 139–150.

    Article  Google Scholar 

  19. Kotelnikova, Z.A. and Kotelnikov, A.R., Experimental study of the SiO2–H2O–KF–KCl–NaF system at 700–800°C and 1–2 kbar based on synthetic fluid inclusions in quartz, Geol. Ore Deposits, 2018, vol. 60, no. 5, pp. 449–460.

    Article  Google Scholar 

  20. Kotel’nikova, Z.A. and Kotel’nikov, A.R., Experimental Study of Heterogeneous Fluid Equilibria in Silicate–Salt–Water Systems, Geol. Ore Deposits, 2010, vol. 52, no. 2, pp. 154–166.

    Article  Google Scholar 

  21. Kotel’nikova, Z.A. and Kotel’nikov, A.R., NaF-bearing fluids: experimental investigation at 500–800°C and P = 2000 bar using synthetic fluid inclusions in quartz, Geochem. Int., 2008, vol. 46, no. 1, pp. 48–61.

    Article  Google Scholar 

  22. Kotelnikova, Z.A. and Kotelnikov, A.R., Synthetic NaF-bearing fluid inclusions, Geochem. Int., 2002, vol. 40, no. 6, pp. 594–600.

    Google Scholar 

  23. Krylova, T.L., Aleshin, A.P., Lomm, T., Velichkin, V. I., and Cuney, M., Evidence for magmatic origin of the ore-forming fluids at the Mo–U deposits of the Strel’tsovka ore field, Eastern Transbaikalia, Russia, Mater. XIII mezhdunar. konf. po termobarogeokhimoo sovmestno s IV simpoziumom APIFIS (Proc. 13th International Conference on Thermobarogeochemistry together with 4th APIFIS Symposium), 2008, vol. 2, pp. 64–67. http://www.minsoc.ru/2008-1-84-0

  24. Peiffert, Ch., Nguyen-Trung, Ch., and Cuney, M., Experimental determination of uranium solubility and fluid–melt partition coefficients in the uranium oxide–haplogranite–H2O–NaX (X = Cl, F) system at 770°C, 2 kbar, Geochim. Cosmochim. Acta, 1996, vol. 60, pp. 1515–1529.

    Article  Google Scholar 

  25. Phase Diagrams of Nuclear Reactor Materials, Thoma, R.E., Ed., Reactor Chemistry Division. Report ORNL–2548. Oak Ridge National Laboratory, Atomic Energy Commission, 1959.

  26. Redkin, A.F. and Borodulin, G.P., Pyrochlores as indicators of the uranium-bearing potential of magmatic melts, Dokl. Earth Sci., 2010, vol. 432, no. 2, pp. 787–790.

    Article  Google Scholar 

  27. Redkin A.F., Kotova N.P., and Shapovalov Yu.B., Liquid immiscibility in the system NaF–H2O and microlite solubility at 800°C, Dokl. Earth Sci., 2016, vol. 469, no. 2, pp. 722–727.

    Article  Google Scholar 

  28. Redkin, A.F. and Velichkin V.I., Uranium fluorides in hydrothermal–magmatic systems, Dokl. Earth Sci., 2013, vol. 450, no. 2, pp. 544–547.

    Article  Google Scholar 

  29. Redkin A.F., Velichkin V.I. Research of the Uranium, Niobium, and Tantalum Behavior in the Granite Melt–Chloride Fluid System at 750°C and 1000 Bar, Geol. Ore Deposits, 2020, vol. 62, no. 5, pp. 372–383.

    Article  Google Scholar 

  30. Redkin, A.F., Velichkin, V.I., Aleshin, A.P., and Borodulin, G.P., Interaction of model F–bearing silicic melt with chloride fluid, uraninite, and columbite at 750°C and 1000–2000 bar and its implications for estimation of the ore-forming capability of the upper crustal magma chamber beneath the Strel’tsovka Caldera, Eastern Transbaikalia, Geol. Ore Deposits, 2009, vol. 51, no. 4, pp. 290–304.

    Article  Google Scholar 

  31. Redkin A.F, Kotova N.P., Shapovalov Yu.B., and Velichkin V.I. Experimental study and thermodynamic modeling of niobium, tantalum, and uranium behavior in supercritical fluoride hydrothermal solutions. In: Solution Chemistry. Advances in Research and Applications, Xiong, Y., Eds., New York: Nova Sci. Publ., 2018, pp. 1–46.

    Google Scholar 

  32. Roberson, C.E. and Hem, J.D., Solubility of cryolite at 25°C and 1 atmosphere pressure, J. Res. U.S. Geol. Surv., 1973, vol. 1, no. 4, pp. 483–485.

    Google Scholar 

  33. Rybalov, B.L. and Omel’yanenko, B.I., Istochniki rudnogo veshchestva endogennykh uranovykh mestorozhdenii (Sources of Ore Matter of Endogenous Uranium Deposits), Moscow: Nauka, 1989. 275 s.

  34. Shibue, Y., Empirical expressions of quartz solubility in H2O, H2O + CO2, and H2O + NaCl fluids, Geochem. J., 1996, vol. 30, pp. 339–354.

    Article  Google Scholar 

  35. Shmulovich, K.I., Yardley, B.W.D., and Graham, C.M., Solubility of quartz in crustal fluids: experiments and general equations for salt solutions and H2O–CO2 mixtures at 400–800°C and 0.1–0.9 GPa, Geofluids, 2006, vol. 6, pp. 154–167.

    Article  Google Scholar 

  36. Simakin, A.G., Devyatova, V.N., Salova, T.P., and Shaposhnikova, O.Yu., Experimental study of amphibole crystallization from the highly magnesian melt of Shiveluch Volcano, Kamchatka, Petrology, 2019, vol. 27, no. 5, pp. 442–459.

    Article  Google Scholar 

  37. Smirnov, S.Z., The fluid regime of crystallization of water-saturated granitic and pegmatitic magmas: a physicochemical analysis, Russ. Geol. Geophys., 2015, vol. 56, no. 9, pp. 1292–1307.

    Article  Google Scholar 

  38. Valyashko, V.M., Fazovye ravnovesiya i svoistva gidrotermal’nykh sistem (Phase Equilibria and Properties of Hydrothermal Systems), Moscow: Nauka, 1990.

  39. Vol’fson, F.I., Proiskhozhdenie rud metallov (Origin of Metallic Ores), Moscow: Znanie, 1974, no. 6.

  40. Williams, D.F., Toth, L.M., and Clarno, K.T., Assessment of Candidate Molten Salt Coolants for the Advanced High–Temperature Reactor (AHTR), Report ORNL/TM–2006/12. Nuclear Science and Technology Division Oak Ridge National Laboratory, 2006.

  41. Yudintsev, S.V., Study of uranium behavior in alkaline magmas, Geokhimiya, 1990, no. 4, pp. 538–544.

  42. Yudintsev, S.V. and Simonova, L.I. Radiochemistry of tin-bearing lithium-fluorine granites, Geochem. Intern., 1992, vol. 29, pp. 48–55.

  43. Zharikov, V.A., Ivanov I. P., Omel’yanenko, B.I., Red’kin, A.F., and Yudintsev, S.V. Experimental study of the solubility of uraninite in granitic melts and fluid solutions at high pressures and temperatures, Int. Geol. Review, 1987, vol. 29, no. 8, pp. 997–1004.

Download references

ACKNOWLEDGMENTS

The authors are grateful to T.N. Shurige (VIMS) for kindly providing the columbite for our experimental research; A.A. Viryus and A.N. Nekrasov (IEM RAS) for help in electron microscope analyses of solid phases with an VEGA TS 5130MM; T.N. Dokina and O.L. Samokhvalova for XRD analyses; G.P. Borodulin, L.T. Dmitrenko, and M.V. Fokeev for preparation and successful experiments on the high-hydrothermal and gas-pressure apparatus; and A.P. Aleshin (IGEM RAS) for discussion of the geology and geochemistry of uranium at the Streltsovska ore field deposits. We are grateful to A.V. Girnis (IGEM RAS) and A.V. Bobrov (Moscow State University) for their attention to our work and critical comments, which made it possible to improve the final version of the manuscript.

Funding

The study was primarily financed by the programs of the Department of Science of the Russian Academy of Sciences; the Russian Foundation for Basic Research (project no. 20-05-00307), and the Federal Scientific Research Institute of the State Academies of Sciences (topic no. 121031700049-6).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. F. Redkin, V. I. Velichkin or Yu. B. Shapovalov.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redkin, A.F., Velichkin, V.I. & Shapovalov, Y.B. Study of the Behavior of Uranium, Niobium, and Tantalum in the Granite Melt–Fluoride Fluid System at 800–950°C, 2300 Bar. Geol. Ore Deposits 63, 300–323 (2021). https://doi.org/10.1134/S1075701521040073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701521040073

Keywords:

Navigation