Skip to main content
Log in

On chemical reaction planar fronts in an elastic–viscoelastic mechanical framework

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A stress-affected chemical reaction front propagation is considered using the concept of a chemical affinity tensor. A reaction between an elastic solid constituent and a diffusing constituent, localized at the reaction front, is considered. As a result of the reaction, the elastic constituent transforms into viscoelastic one. The reaction is accompanied by volume expansion that in turn may result in stresses at the reaction front, which affect the front velocity through the normal component of the chemical affinity tensor. Considering a plane strain problem with a planar chemical reaction front propagation under uniaxial deformation, we focus on the studies of the reaction front kinetics in dependence on external strains and material parameters with the use of the notion of the equilibrium concentration. Then, stress relaxation behind the propagating reaction front is modeled. A standard linear solid model is used for the reaction product, and its particular cases are also considered. Analytical solutions are obtained which allow to study in explicit form the strain influence and material parameters on the front retardation or acceleration and stress relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Brassart, L., Suo, Z.: Reactive flow in solids. J. Mech. Phys. Solids 61(1), 61–77 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  2. Buttner, C., Zacharias, M.: Retarded oxidation of Si nanowires. Appl. Phys. Lett. 89, 263106 (2006)

    Article  ADS  Google Scholar 

  3. Courtney, T.: Mechanical Behavior of Materials. McGraw-Hill, New York (2000)

    Google Scholar 

  4. Cui, Z., Gao, F., Qu, J.: Interface-reaction controlled diffusion in binary solids with applications to lithium ion batteries. J. Mech. Phys. Solids 61(2), 293–310 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  5. De Donder, T., Van Rysselberghe, P.: Thermodynamic Theory of Affinity: A Book of Principles. Stanford University Press, Stanford University, Stanford (1936)

    Google Scholar 

  6. Deal, E., Grove, A.: General relationship for the thermal oxidation of silicon. Appl. Phys. 36, 3770–3778 (1965)

    Article  Google Scholar 

  7. EerNisse, E.: Stress in thermal SiO\(_2\) during growth. Appl. Phys. Lett. 35, 8 (1979)

    Article  Google Scholar 

  8. Freidin, A.B.: On chemical reaction fronts in nonlinear elastic solids. In: Indeitsev, D., Krivtsov, A.M. (eds.) Proceedings of the XXXVII Summer School–Conference Advanced Problems in Mechanics (APM 2009), St. Petersburg (Repino), June 30–July 5, 2009, pp. 231–237. Institute for Problems in Mechanical Engineering of Russian Academy of Sciences (2009)

  9. Freidin, A.B.: Chemical affinity tensor and stress-assist chemical reactions front propagation in solids. In: Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition, vol. 9, p. V009T10A102. American Society of Mechanical Engineers (2013)

  10. Freidin, A.B.: On a chemical affinity tensor for chemical reactions in deformable solids. Mech. Solids 50(3), 260–285 (2015)

    Article  ADS  Google Scholar 

  11. Freidin, A.B., Korolev, I.K., Aleshchenko, S.P., Vilchevskaya, E.N.: Chemical affinity tensor and chemical reaction front propagation: theory and FE-simulations. Int. J. Fract. 202(2), 245–259 (2016)

    Article  Google Scholar 

  12. Freidin, A.B., Morozov, N.F., Petrenko, S.E., Vilchevskaya, E.N.: Chemical reactions in spherically-symmetric problems of mechanochemistry. Acta Mech. 227(1), 43–56 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Freidin, A.B., Sharipova, L.L.: Forbidden strains and stresses in mechanochemistry of chemical reaction fronts. In: Altenbach, H., Pouget, J., Rousseau, M., Collet, B., Michelitsch, T. (eds.) Generalized Models and Non-classical Approaches in Complex Materials 1. Advanced Structured Materials, vol. 89, pp. 335–348. Springer, Cham (2018)

    Chapter  Google Scholar 

  14. Freidin, A.B., Vilchevskaya, E.N.: Chemical affinity tensor in coupled problems of mechanochemistry. In: Altenbach, H., Öchsner, A. (eds.) Encyclopedia of Continuum Mechanics. Springer, Berlin (2020)

    Google Scholar 

  15. Freidin, A.B., Vilchevskaya, E.N., Korolev, I.K.: Stress-assist chemical reactions front propagation in deformable solids. Int. J. Eng. Sci. 83, 57–75 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gibbs, J.: The Collected Works of J.W. Gibbs, Volume 1: Thermodynamics. Yale University Press, London (1948)

    Google Scholar 

  17. Glansdorff, P., Prigogine, I.: Thermodynamic Theory of Structure, Stability and Fluctuations. Wiley, New York (1971)

    MATH  Google Scholar 

  18. Grinfeld, M.: Thermodynamic Methods in the Theory of Heterogeneous Systems. Longman, Sussex (1991)

    Google Scholar 

  19. Gurtin, M.: Configurational Forces as Basic Concepts of Continuum Physics. Springer, Berlin (2000)

    MATH  Google Scholar 

  20. Huang, C.K., Jaccodine, R.J., Butler, S.R.: Stress effect on the oxidation of silicon. In: Kapoor, V.J., Hankins, K.T. (eds.) Silicon Nitride and Silicon Dioxide Thin Insulating Film, vol. 87–10, pp. 343–349. The Electrochemical Society, Pennington (1987)

    Google Scholar 

  21. Jia, Z., Li, T.: Stress-modulated driving force for lithiation reaction in hollow nano-anodes. J. Power Sources 275, 866–876 (2015)

    Article  ADS  Google Scholar 

  22. Kao, D., McVitie, J., Nix, W., Saraswat, K.: Two dimensional thermal oxidation of silicon-II. Modeling stress effect in wet oxides. IEEE Trans. Electron Dev. 35, 25–37 (1988)

    Article  ADS  Google Scholar 

  23. Kienzler, R., Herrmann, G.: Mechanics in Material Space with Application to Defect and Fracture Mechanics. Springer, Berlin (2000)

    MATH  Google Scholar 

  24. Knowles, J.: On the dissipation associated with equilibrium shocks in finite elasticity. J. Elast. 9, 131–158 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  25. Knyazeva, A.: Cross effects in solid media with diffusion. J. Appl. Mech. Tech. Phys. 44, 373–384 (2003)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  26. Knyazeva, A.: Application of irreversible thermodynamics to diffusion in solids with internal surfaces. J. Non-Equilib. Thermodyn. 45(4), 401–418 (2020)

    Article  ADS  Google Scholar 

  27. Kobeda, E., Irene, E.: In situ stress measurements during thermal oxidation of silicon. J. Vac. Sci. Technol. B 7, 163 (1989)

    Article  Google Scholar 

  28. Krzeminski, C., Han, X.L.: Understanding of the retarded oxidation effects in silicon nanostructures. Appl. Phys. Lett. 100, 26 (2012)

    Article  Google Scholar 

  29. Levitas, V., Attariani, H.: Anisotropic compositional expansion and chemical potential for amorphous lithiated silicon under stress tensor. Sci. Rep. 3, 1615 (2013)

    Article  ADS  Google Scholar 

  30. Loeffel, K., Anand, L.: A chemo-thermo-mechanically coupled theory for elastic-viscoplastic deformation, diffusion, and volumetric swelling due to a chemical reaction. Int. J. Plasticity 27, 1409–1431 (2011)

    Article  MATH  Google Scholar 

  31. Maugin, G.: Configurational Forces: Thermomechanics, Physics, Mathematics, and Numerics. Chapman & Hall/CRC Press, Boca Raton (2011)

    MATH  Google Scholar 

  32. McDowell, M., Lee, S., Nix, W., Cui, Y.: 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 25(36), 4966–4984 (2013)

    Article  Google Scholar 

  33. Mihalyi, A., Jaccodine, R.J., Delph, T.J.: Stress effects in the oxidation of planar silicon substrates. Appl. Phys. Lett. 74(14), 1981–1983 (1999)

    Article  ADS  Google Scholar 

  34. Morozov, A.V., Freidin, A.B., Klinkov, V.A., et al.: Experimental and theoretical studies of Cu–Sn intermetallic phase growth during high-temperature storage of eutectic snag interconnects. J. Electron. Mater. 49(12), 7194–7210 (2020)

    Article  ADS  Google Scholar 

  35. Morozov, A.V., Freidin, A.B., Müller, W.H.: Stability of chemical reaction fronts in the vicinity of a blocking state. PNRPU Mech. Bull. 2019(3), 58–64 (2019)

    Google Scholar 

  36. Muhlstein, C.L., Ritchie, R.O.: High-cycle fatigue of micron-scale polycrystalline silicon films: fracture mechanics analyses of the role of the silica/silicon interface. Int. J. Fract. 119(120), 449–4745 (2003)

    Article  Google Scholar 

  37. Nanko, M.: High-temperature oxidation of ceramic matrix composites dispersed with metallic particles. Sci. Technol. Adv. Mater. 6, 129–134 (2005)

    Article  Google Scholar 

  38. Palmov, V.: Vibrations of Elasto-Plastic Bodies. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  39. Poluektov, M., Freidin, A.B., Figiel, L.: Modelling stress-affected chemical reactions in non-linear viscoelastic solids with application to lithiation reaction in spherical Si particles. Int. J. Eng. Sci. 128, 44–62 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Poluektov, M., Freidin, A.B., Figiel, L.: Micromechanical modelling of mechanochemical processes in heterogeneous materials. Model. Simul. Mater. Sci. Eng. 27, 084005 (2019)

    Article  ADS  Google Scholar 

  41. Prigogine, I., Defay, R.: Chemical Thermodynamics. Longmans, Green, London (1954)

    Google Scholar 

  42. Reiner, M.: Rheology. Springer, Gottingen (1958)

    Google Scholar 

  43. Sutardja, P., Oldham, W.G.: Modeling of stress effects in silicon oxidation. IEEE Trans. Electron Dev. 36(11), 2415–2421 (1988)

    Article  ADS  Google Scholar 

  44. Vilchevskaya, E.N., Freidin, A.B.: On kinetics of chemical reaction fronts in elastic solids. In: Altenbach, H., Morozov, N. (eds.) Surface Effects in Solid Mechanics, pp. 105–117. Springer, Berlin (2013)

    Google Scholar 

  45. Wilmanski, K.: Thermomechanics of Continua. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  46. Yen, J.Y., Hwu, J.G.: Enhancement of silicon oxidation rate due to tensile mechanical stress. Appl. Phys. Lett. 76, 1834–1835 (2000)

    Article  ADS  Google Scholar 

  47. Zhao, K., Pharr, M., Wan, Q., Wang, W., Kaxiras, E., Vlassak, J., Suo, Z.: Concurrent reaction and plasticity during initial lithiation of crystalline silicon in lithium-ion batteries. J. Electrochem. Soc. 159, A238–A243 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

ABF greatly appreciates the financial support provided by the Russian Science Foundation (Grant No. 19-19-00552). SP and ECh are grateful for the financial support provided by the Chaire André Citroën between Stellantis and Ecole Polytechnique

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander B. Freidin.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrenko, S., Freidin, A.B. & Charkaluk, E. On chemical reaction planar fronts in an elastic–viscoelastic mechanical framework. Continuum Mech. Thermodyn. 34, 137–163 (2022). https://doi.org/10.1007/s00161-021-01051-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-021-01051-x

Keywords

Navigation