Skip to main content

Advertisement

Log in

The zinc transporter ZIP7 (Slc39a7) controls myocardial reperfusion injury by regulating mitophagy

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Whereas elimination of damaged mitochondria by mitophagy is proposed to be cardioprotective, the regulation of mitophagy at reperfusion and the underlying mechanism remain elusive. Since mitochondrial Zn2+ may control mitophagy by regulating mitochondrial membrane potential (MMP), we hypothesized that the zinc transporter ZIP7 that controls Zn2+ levels within mitochondria would contribute to reperfusion injury by regulating mitophagy. Mouse hearts were subjected to ischemia/reperfusion in vivo. Mitophagy was evaluated by detecting mitoLC3II, mito-Keima, and mitoQC. ROS were measured with DHE and mitoB. Infarct size was measured with TTC staining. The cardiac-specific ZIP7 conditional knockout mice (ZIP7 cKO) were generated by adopting the CRISPR/Cas9 system. Human heart samples were obtained from donors and recipients of heart transplant surgeries. KO or cKO of ZIP7 increased mitophagy under physiological conditions. Mitophagy was not activated at the early stage of reperfusion in mouse hearts. ZIP7 is upregulated at reperfusion and ZIP7 cKO enhanced mitophagy upon reperfusion. cKO of ZIP7 led to mitochondrial depolarization by increasing mitochondrial Zn2+ and, accumulation of PINK1 and Parkin in mitochondria, suggesting that the decrease in mitochondrial Zn2+ in response to ZIP7 upregulation resulting in mitochondrial hyperpolarization may impede PINK1 and Parkin accumulation in mitochondria. Notably, ZIP7 is markedly upregulated in cardiac mitochondria from patients with heart failure (HF), whereas mitochondrial PINK1 accumulation and mitophagy were suppressed. Furthermore, ZIP7 cKO reduced mitochondrial ROS generation and myocardial infarction via a PINK1-dependet manner, whereas overexpression of ZIP7 exacerbated myocardial infarction. Our findings identify upregulation of ZIP7 leading to suppression of mitophagy as a critical feature of myocardial reperfusion injury. A timely suppression of cardiac ZIP7 upregulation or inactivation of ZIP7 is essential for the treatment of reperfusion injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Reimer KA, Lowe JE, Rassmussen MM, Jennings RB (1977) The wavefront phenomenon of ischemic cell death. I. Myocardial infarct size vs. duration of coronary occlusion in dogs. Circulation 56:786–794

    Article  CAS  PubMed  Google Scholar 

  2. Kornfeld OS, Hwang S, Disatnik MH, Chen CH, Qvit N, Mochly-Rosen D (2015) Mitochondrial reactive oxygen species at the heart of the matter: new therapeutic approaches for cardiovascular diseases. Circ Res 116:1783–1799. https://doi.org/10.1161/circresaha.116.305432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gottlieb RA, Mentzer RM Jr, Linton PJ (2011) Impaired mitophagy at the heart of injury. Autophagy 7:1573–1574. https://doi.org/10.4161/auto.7.12.18175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Saito T, Sadoshima J (2015) Molecular mechanisms of mitochondrial autophagy/mitophagy in the heart. Circ Res 116:1477–1490. https://doi.org/10.1161/circresaha.116.303790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rodriguez-Enriquez S, Kim I, Currin RT, Lemasters JJ (2006) Tracker dyes to probe mitochondrial autophagy (mitophagy) in rat hepatocytes. Autophagy 2:39–46. https://doi.org/10.4161/auto.2229

    Article  CAS  PubMed  Google Scholar 

  6. Sciarretta S, Maejima Y, Zablocki D, Sadoshima J (2018) The role of autophagy in the heart. Annu Rev Physiol 80:1–26. https://doi.org/10.1146/annurev-physiol-021317-121427

    Article  CAS  PubMed  Google Scholar 

  7. Wei CC, Luo Z, Hogstrand C, Xu YH, Wu LX, Chen GH, Pan YX, Song YF (2018) Zinc reduces hepatic lipid deposition and activates lipophagy via Zn(2+)/MTF-1/PPARα and Ca(2+)/CaMKKβ/AMPK pathways. FASEB J 32:6666–6680. https://doi.org/10.1096/fj.201800463

    Article  CAS  Google Scholar 

  8. Bian X, Teng T, Zhao H, Qin J, Qiao Z, Sun Y, Liun Z, Xu Z (2018) Zinc prevents mitochondrial superoxide generation by inducing mitophagy in the setting of hypoxia/reoxygenation in cardiac cells. Free Radic Res 52:80–91. https://doi.org/10.1080/10715762.2017.1414949

    Article  CAS  PubMed  Google Scholar 

  9. Cho HM, Ryu JR, Jo Y, Seo TW, Choi YN, Kim JH, Chung JM, Cho B, Kang HC, Yu SW, Yoo SJ, Kim H, Sun W (2019) Drp1-Zip1 interaction regulates mitochondrial quality surveillance system. Mol Cell 73:364-376.e368. https://doi.org/10.1016/j.molcel.2018.11.009

    Article  CAS  PubMed  Google Scholar 

  10. Adulcikas J, Sonda S, Norouzi S, Sohal SS, Myers S (2019) Targeting the zinc transporter ZIP7 in the treatment of insulin resistance and type 2 diabetes. Nutrients 11:408. https://doi.org/10.3390/nu11020408

    Article  CAS  PubMed Central  Google Scholar 

  11. Taylor KM, Hiscox S, Nicholson RI, Hogstrand C, Kille P (2012) Protein kinase CK2 triggers cytosolic zinc signaling pathways by phosphorylation of zinc channel ZIP7. Sci Signal 5:ra11. https://doi.org/10.1126/scisignal.2002585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Taylor KM, Vichova P, Jordan N, Hiscox S, Hendley R, Nicholson RI (2008) ZIP7-mediated intracellular zinc transport contributes to aberrant growth factor signaling in antihormone-resistant breast cancer cells. Endocrinology 149:4912–4920. https://doi.org/10.1210/en.2008-0351

    Article  CAS  PubMed  Google Scholar 

  13. Anzilotti C, Swan DJ, Boisson B (2019) An essential role for the Zn(2+) transporter ZIP7 in B cell development. Nat Immunol 20:350–361. https://doi.org/10.1038/s41590-018-0295-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tuncay E, Bitirim VC, Durak A, Carrat GRJ, Taylor KM, Rutter GA, Turan B (2017) Hyperglycemia-induced changes in ZIP7 and ZnT7 expression cause Zn(2+) release from the sarco(endo)plasmic reticulum and mediate ER stress in the heart. Diabetes 66:1346–1358. https://doi.org/10.2337/db16-1099

    Article  CAS  PubMed  Google Scholar 

  15. Baba Y, Higa JK, Shimada BK, Horiuchi KM, Suhara T, Kobayashi M, Woo JD, Aoyagi H, Marh KS, Kitaoka H, Matsui T (2018) Protective effects of the mechanistic target of rapamycin against excess iron and ferroptosis in cardiomyocytes. Am J Physiol Heart Circ Physiol 314:H659-h668. https://doi.org/10.1152/ajpheart.00452.2017

    Article  CAS  PubMed  Google Scholar 

  16. Zhang T, Zhang Y, Cui M, Jin L, Wang Y, Lv F, Liu Y, Zheng W, Shang H, Zhang J, Zhang M, Wu H, Guo J, Zhang X, Hu X, Cao CM, Xiao RP (2016) CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat Med 22:175–182. https://doi.org/10.1038/nm.4017

    Article  CAS  PubMed  Google Scholar 

  17. Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337:1062–1065. https://doi.org/10.1126/science.1219855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lichten LA, Cousins RJ (2009) Mammalian zinc transporters: nutritional and physiologic regulation. Annu Rev Nutr 29:153–176

    Article  PubMed  Google Scholar 

  19. Hoshino A, Wang WJ, Wada S, McDermott-Roe C, Evans CS, Gosis B, Morley MP, Rathi KS, Li J, Li K, Yang S, McManus MJ, Bowman C, Potluri P, Levin M, Damrauer S, Wallace DC, Holzbaur ELF, Arany Z (2019) The ADP/ATP translocase drives mitophagy independent of nucleotide exchange. Nature 575:375–379. https://doi.org/10.1038/s41586-019-1667-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ikeda Y, Shirakabe A, Maejima Y, Zhai P, Sciarretta S, Toli J, Nomura M, Mihara K, Egashira K, Ohishi M, Abdellatif M, Sadoshima J (2015) Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress. Circ Res 116:264–278. https://doi.org/10.1161/circresaha.116.303356

    Article  CAS  PubMed  Google Scholar 

  21. Williams JA, Zhao K, Jin S, Ding W-X (2017) New methods for monitoring mitochondrial biogenesis and mitophagy in vitro and in vivo. Exp Biol Med (Maywood, NJ) 242:781–787. https://doi.org/10.1177/1535370216688802

    Article  CAS  Google Scholar 

  22. Dorn GW 2nd (2016) Jurassic PARK2: you eat your mitochondria, and you are what your mitochondria eat. Autophagy 12:610–611. https://doi.org/10.1080/15548627.2016.1143210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huang L, Kirschke CP, Zhang Y, Yu YY (2005) The ZIP7 gene (Slc39a7) encodes a zinc transporter involved in zinc homeostasis of the Golgi apparatus. J Biol Chem 280:15456–15463. https://doi.org/10.1074/jbc.M412188200

    Article  CAS  PubMed  Google Scholar 

  24. Taylor KM, Morgan HE, Johnson A, Nicholson RI (2004) Structure-function analysis of HKE4, a member of the new LIV-1 subfamily of zinc transporters. Biochem J 377:131–139. https://doi.org/10.1042/bj20031183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tuncay E, Bitirim CV, Olgar Y, Durak A, Rutter GA, Turan B (2019) Zn(2+)-transporters ZIP7 and ZnT7 play important role in progression of cardiac dysfunction via affecting sarco(endo)plasmic reticulum-mitochondria coupling in hyperglycemic cardiomyocytes. Mitochondrion 44:41–52. https://doi.org/10.1016/j.mito.2017.12.011

    Article  CAS  PubMed  Google Scholar 

  26. Devinney MJ, Malaiyandi LM, Vergun O, DeFranco DB, Hastings TG, Dineley KE (2009) A comparison of Zn2+- and Ca2+-triggered depolarization of liver mitochondria reveals no evidence of Zn2+-induced permeability transition. Cell Calcium 45:447–455. https://doi.org/10.1016/j.ceca.2009.03.002

    Article  CAS  PubMed  Google Scholar 

  27. Chouchani ET, Methner C, Nadtochiy SM, Logan A, Pell VR, Ding S, James AM, Cochemé HM, Reinhold J, Lilley KS, Partridge L, Fearnley IM, Robinson AJ, Hartley RC, Smith RA, Krieg T, Brookes PS, Murphy MP (2013) Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat Med 19:753–759. https://doi.org/10.1038/nm.3212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cochemé HM, Quin C, McQuaker SJ, Cabreiro F, Logan A, Prime TA, Abakumova I, Patel JV, Fearnley IM, James AM, Porteous CM, Smith RA, Saeed S, Carré JE, Singer M, Gems D, Hartley RC, Partridge L, Murphy MP (2011) Measurement of H2O2 within living Drosophila during aging using a ratiometric mass spectrometry probe targeted to the mitochondrial matrix. Cell Metab 13:340–350. https://doi.org/10.1016/j.cmet.2011.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Andres AM, Hernandez G, Lee P, Huang C, Ratliff EP, Sin J, Thornton CA, Damasco MV, Gottlieb RA (2014) Mitophagy is required for acute cardioprotection by simvastatin. Antioxid Redox Signal 21:1960–1973. https://doi.org/10.1089/ars.2013.5416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen YR, Zweier JL (2014) Cardiac mitochondria and reactive oxygen species generation. Circ Res 114:524–537. https://doi.org/10.1161/circresaha.114.300559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341:233–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen Q, Thompson J, Hu Y, Dean J, Lesnefsky EJ (2019) Inhibition of the ubiquitous calpains protects complex I activity and enables improved mitophagy in the heart following ischemia-reperfusion. Am J Physiol Cell Physiol 317:C910-c921. https://doi.org/10.1152/ajpcell.00190.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guan L, Che Z, Meng X, Yu Y, Li M, Yu Z, Shi H, Yang D, Yu M (2019) MCU Up-regulation contributes to myocardial ischemia-reperfusion injury through calpain/OPA-1-mediated mitochondrial fusion/mitophagy inhibition. J Cell Mol Med 23:7830–7843. https://doi.org/10.1111/jcmm.14662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bin BH, Bhin J, Seo J, Kim SY, Lee E, Park K, Choi DH, Takagishi T, Hara T, Hwang D, Koseki H, Asada Y, Shimoda S, Mishima K, Fukada T (2017) Requirement of zinc transporter SLC39A7/ZIP7 for dermal development to fine-tune endoplasmic reticulum function by regulating protein disulfide isomerase. J Invest Dermatol 137:1682–1691. https://doi.org/10.1016/j.jid.2017.03.031

    Article  CAS  PubMed  Google Scholar 

  35. Ohashi W, Kimura S, Iwanaga T, Furusawa Y, Irié T, Izumi H, Watanabe T, Hijikata A (2016) Zinc transporter SLC39A7/ZIP7 promotes intestinal epithelial self-renewal by resolving ER stress. PLoS Genet 12:e1006349. https://doi.org/10.1371/journal.pgen.1006349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bøtker HE, Cabrera-Fuentes HA, Ruiz-Meana M, Heusch G, Ovize M (2020) Translational issues for mitoprotective agents as adjunct to reperfusion therapy in patients with ST-segment elevation myocardial infarction. J Cell Mol Med 24:2717–2729. https://doi.org/10.1111/jcmm.14953

    Article  PubMed  PubMed Central  Google Scholar 

  37. Heusch G (2020) Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol 17:773–789. https://doi.org/10.1038/s41569-020-0403-y

    Article  PubMed  Google Scholar 

  38. Iguchi M, Kujuro Y, Okatsu K, Koyano F, Kosako H, Kimura M, Suzuki N, Uchiyama S, Tanaka K, Matsuda N (2013) Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation. J Biol Chem 288:22019–22032. https://doi.org/10.1074/jbc.M113.467530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, Kimura Y, Tsuchiya H, Yoshihara H, Hirokawa T, Endo T, Fon EA, Trempe JF, Saeki Y, Tanaka K, Matsuda N (2014) Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510:162–166. https://doi.org/10.1038/nature13392

    Article  CAS  PubMed  Google Scholar 

  40. Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, Sideris DP, Fogel AI, Youle RJ (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524:309–314. https://doi.org/10.1038/nature14893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wikstrom JD, Twig G, Shirihai OS (2009) What can mitochondrial heterogeneity tell us about mitochondrial dynamics and autophagy? Int J Biochem Cell Biol 41:1914–1927. https://doi.org/10.1016/j.biocel.2009.06.006

    Article  CAS  PubMed  Google Scholar 

  42. Brown AM, Kristal BS, Effron MS, Shestopalov AI, Ullucci PA, Sheu KFR, Blass JP, Cooper AJL (2000) Zn2+ inhibits alpha -ketoglutarate-stimulated mitochondrial respiration and the isolated alpha -ketoglutarate dehydrogenase complex. J Biol Chem 275:13441–13447. https://doi.org/10.1074/jbc.275.18.13441

    Article  CAS  PubMed  Google Scholar 

  43. Lecour S, Andreadou I, Bøtker HE, Davidson SM, Heusch G, Ruiz-Meana M, Schulz R, Zuurbier CJ, Ferdinandy P, Hausenloy DJ, Adamovski P, Andreadou I, Batirel S, Barteková M, Bertrand L, Beauloye C, Biedermann D, Borutaite V, Bøtker HE, Chlopicki S, Dambrova M, Davidson S, Devaux Y, Di Lisa F, Djuric D, Erlinge D, Falcao-Pires I, Ferdinandy P, Galatou E, Garcia-Sosa A, Girao H, Giricz Z, Gyongyosi M, Hausenloy DJ, Healy D, Heusch G, Jakovljevic V, Jovanic J, Kararigas G, Kerkal R, Kolar F, Kwak B, Leszek P, Liepinsh E, Lonborg J, Longnus S, Marinovic J, Muntean DM, Nezic L, Ovize M, Pagliaro P, Da Costa Gomes CP, Pernow J, Persidis A, Pischke SE, Podesser B, Potočnjak I, Prunier F, Ravingerova T, Ruiz-Meana M, Serban A, Slagsvold K, Schulz R, van Royen N, Turan B, Vendelin M, Walsh S, Zidar N, Zuurbier C, Yellon D, on behalf of the European Union CCAC (2021) IMproving preclinical assessment of cardioprotective therapies (IMPACT) criteria: guidelines of the EU-CARDIOPROTECTION COST action. Basic Res Cardiol 116:52. https://doi.org/10.1007/s00395-021-00893-5

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (NSFC) (grant numbers 81470397, 81970255, and 81802927).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhelong Xu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 756 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Yang, N., He, H. et al. The zinc transporter ZIP7 (Slc39a7) controls myocardial reperfusion injury by regulating mitophagy. Basic Res Cardiol 116, 54 (2021). https://doi.org/10.1007/s00395-021-00894-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-021-00894-4

Keywords

Navigation