Skip to main content
Log in

Polymorphism in the Sr-Bi System

  • Short Communication
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Eleven examples of hexagonal and orthorhombic polymorphs of intermetallic compounds having 5:3 stoichiometry are listed in the International Crystal Structure Database. A transition temperature between them has only been determined for the Yb–Sb and Sr–Bi systems, but results on the Sr–Bi system are discrepant with those on the Yb–Sb system, in which the phase relationships are well constrained by experimental data, for example, that the lower-temperature polymorph is the prototype orthorhombic Yb5Sb3 structure (αY5Sb3) and the higher temperature polymorph (βYb5Sb3) is isostructural with hexagonal Mn5Si3, with the transformation occurring at 1280 °C. In contrast, thermodynamic modeling on the Sr–Bi system give the inverse sequence of polymorphs with increasing temperature. It appears unlikely that the hexagonal Mn5Si3 structure type can be stable at higher temperatures than the orthorhombic Yb5Sb3 structure in one system, while orthorhombic Yb5Sb3 structure is the stable phase at higher temperatures in another system. The discrepancy can be attributed to the limited experimental data used to model the phase relationships in the Sr–Bi system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

References

  1. F. Xiong, X. Xu, E. Mugnaioli, M. Gemmi, R. Wirth, E.S. Grew, Y. Yang, Kangjinlaite, IMA 2019-112b, in: CNMNC Newsletter 61, Eur. J. Mineral. (2021)

  2. F. Xiong, X. Xu, E. Mugnaioli, M. Gemmi, R. Wirth, Y. Yang, E.S. Grew, Wenjiite, IMA 2019-107c, in: CNMNC Newsletter 61, Eur. J. Mineral. (2021)

  3. J.F. Rauscher, S.M. Kauzlarich, T. Ikeda, G.J. Snyder, Synthesis, Structure, and High Temperature Thermoelectric Properties of Yb11Sb9.3Ge0.5. Z. Anorg. Allg. Chem. 633, 1587–1594 (2007)

  4. B.-Y. Jeon, G. Nam, D.W. Lee, K. M. Ok, T.-S. You, Ce11Ge3.73(2)In6.27: Solid State Synthesis, Crystal Structure and Site-Preference. J. Solid State Chem., 236, 195–202 (2016)

  5. Y. Wang, J. Xin, C. Chen, S. Liu, B. Hu, and Y. Du, Thermodynamic Assessment of the Sr–In and Sr–Bi Systems Supported by First-Principles Calculations, CALPHAD Comput. Coup. Phase Diag. Thermochem., 2014, 45, p 49–54.

    Google Scholar 

  6. B. Eisenmann, K. Deller, Zur Kenntnis der Erdalkaliantimonide und –wismutide Sr2Bi, Ba2Sb, Sr5Bi3, Ba5Sb3 und Ba5Bi3 (On the Earth-Alkali-Antimonides and Bismutides Sr2Bi, Ba2Sb, Sr5Bi3, Ba5Sb3 and Ba5Bi3). Z. Naturforsch., 30b, 66–72 (1975)

  7. G. Bruzzone, E. Franceschi, and F. Merlo, Intermediate Phases Formed by Ca, Sr and Ba, J. Less Common Metals, 1978, 60, p 59–63.

    Article  Google Scholar 

  8. H. Okamoto, Supplemental Literature Review of Binary Phase Diagrams: Al-Mg, Bi-Sr, Ce-Cu, Co-Nd, Cu-Nd, Dy-Pb, Fe-Nb, Nd-Pb, Pb-Pr, Pb-Tb, Pd-Sb, and Si-W, J. Phase Equil. Diff., 2015, 36(2), p 183–195.

    Article  Google Scholar 

  9. P. Villars, K. Cenzual (Eds.), Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds, Release 2017/18, ASM International, Materials Park, OH (2017)

  10. N.N. Zhuravlev, and E.M. Smirnova, Investigations of Alloys of the Bi–Ba and Bi–Sr Systems, Inorg. Mater., 1966, 2(4), p 654–656.

    Google Scholar 

  11. S.A. Shchukarev, M.P. Morozova, K. Kho-Yn, and G.V. Kokosh, Sistema Strontsiy-Vismut (The Strontium-Bismuth System), Zh. Oshch. Khim, 1956, 26(6), p 1525–1531.

    Google Scholar 

  12. H. Okamoto, Bi–Mg (Bismuth–Magnesium), J. Phase Equil., 1992, 13, p 672–673.

    Article  Google Scholar 

  13. M. Paliwal, and I.H. Jung, Thermodynamic Modeling of the Mg–Bi and Mg–Sb Binary Systems and Short-Range-Ordering Behavior of the Liquid Solutions, CALPHAD Comput. Coupl. Phase Diag. Thermochem., 2009, 33, p 744–754.

    Google Scholar 

  14. R.E. Bodnar, and H. Steinfink, The Phase Equilibria and Crystal Chemistry of the Intermediate Phases in the Ytterbium-Antimony System, Inorgan. Chem., 1967, 6(2), p 327–330.

    Article  Google Scholar 

  15. G.D. Brunton, and H. Steinfink, The Crystal Structure of β-Ytterbium Triantimonide, a Low-Temperature Phase, Inorg. Chem., 1971, 10, p 2301–2303.

    Article  Google Scholar 

  16. V.D. Albulkhaev, Phase Relations and Properties of Alloys in the Yb–Sb System, Inorg. Mater., 1999, 35(5), p 431–435.

    Google Scholar 

  17. X.J. Liu, S.X. Gan, Z.S. Li, C.P. Wang, A.T. Tang, and F.S. Pan, Thermodynamic Assessment of the Ho–Sb and Sb–Yb Systems, CALPHAD Comput. Coupl. Phase Diag. Thermochem., 2012, 37, p 132–136.

    Google Scholar 

  18. E. Garcia, and J.D. Corbett, A synthetic and Structural Study of the Zirconium-Antimony System, J. Solid State Chem., 1988, 73, p 440–451.

    Article  ADS  Google Scholar 

  19. E. Garcia, J.D. Corbett, Chemistry of Polar Intermetallic Compounds. Study of two Zr5Sb3 Phases, Hosts for a Diverse Interstitial Chemistry. Inorg. Chem., 27, 2353-2359 (1988)

  20. Y. Wang, E.J. Gabe, L.D. Calvert, and J.B. Taylor, The Crystal Structure of Y5Bi3 and its Relation to the Mn5Si3 and the Yb5Sb3 Type Structures, Acta Cryst., 1976, B32, p 1440–1445.

    Article  Google Scholar 

  21. S. Gupta, E.A León Escamilla, F. Wang, C.J. Miller, J.D. Corbett, R5Pn3-Type Phases of the Heavier Trivalent Rare-Earth-Metal Pnictides (Pn = Sb, Bi): New Phase Transitions for Er5Sb3 and Tm5Sb3. Inorg. Chem. 48(10), 4362–4371 (2009)

  22. M. Zelinska, O. Zhak, S. Oryshchyn, V. Babizhet'sky, J.V. Pivan, R. Guérin, Erbium-Rich Region of the Ternary Er–Ni–Sb System: Solid State Phase Equilibria at 1073 K and Crystal Structures of the New Ternary Compound Er5Sb3−xNix (x=0.48) and Both Modifications of Er5Sb3, J. Alloys Compd. 437, 133–139 (2007)

  23. M.N. Abdusalyamova, O.I. Rakhmatov, N.D. Fazlyeva, and A.G. Chuiko, Phase Diagram of the Thulium/Antimony System, Inorg. Mater., 1991, 27(8), p 1386–1388.

    Google Scholar 

  24. S.V. Krivovichev, Structural Complexity of Minerals: Information Storage and Processing in the Mineral World, Mineral. Mag., 2013, 77(3), p 275–326.

    Article  Google Scholar 

  25. S.V. Krivovichev, Structural Complexity and Configurational Entropy of Crystals, Acta Cryst., 2016, B72, p 274–276.

    Google Scholar 

  26. J.J. Williams, M.J. Kramer, M. Akinc, S.K. Malik, Effects of Interstitial Additions on the Structure of Ti5Si3. J. Mater. Res. 15(8), 1773–1779 (2000)

  27. J.J. Williams, Y.Y. Ye, M.J. Kramer, K.M. Ho, L. Hong, C.L. Fu, S.K. Malik, Theoretical Calculations and Experimental Measurements of the Structure of Ti5Si3 with Interstitial Additions. Intermetallics 8, 937–943 (2000)

  28. J.D. Corbett, and E.-A. León-Escamilla, Role of Hydrogen in Stabilizing New Hydride Phases or Altering Old Ones, J. Alloys Compd., 2003, 356–357, p 59–64.

    Article  Google Scholar 

  29. E.A. León-Escamilla, J.D. Corbett, Hydrogen in Polar Intermetallics. Binary Pnictides of Divalent Metals with Mn5Si3-Type Structures and their Isotypic Ternary Hydride Solutions, Chem. Mater., 18, 4782–4792 (2006)

  30. E.A. Franceschi, and F. Ricaldone, Intermetallic Binary Phases of 5:3 Composition, Revue de Chimie Minérale, 1984, 21, p 202–220.

    Google Scholar 

  31. W.M. Hurng and J.D. Corbett, Alkaline-Earth-Metal Antimonides and Bismuthides with the A5Pn3 Stoichiometry. Interstitial and Other Zintl Phases Formed on their Reactions with Halogen or Sulfur, J. Mater. 1(3), 311–319 (1989)

  32. M. Martinez-Ripoll, and G. Brauer, The Crystal Structure of Sr5Sb3, Acta Crystallograph., 1973, B29, p 2717–2720.

    Article  Google Scholar 

  33. A, Rehr and S.M. Kauzlarich, A New Modification of Sr5Sb3, Acta Cryst. C49, 1442–1444 (1993)

  34. J.B. Taylor, L.D. Calvert, and Y. Wang, Powder Data for Some New Europium Antimonides and Bismuthides, J. Appl. Crystallogr., 1979, 12, p 249–251.

    Article  Google Scholar 

  35. K. Yoshihara, J.B. Taylor, L.D. Calvert, and J.G. Despault, Rare-Earth Bismuthides, J. Less Common Metals, 1975, 41(2), p 329–337.

    Article  Google Scholar 

Download references

Acknowledgments

I thank Ursula Kattner for constructive suggestions and advice, and for her compiling a list of polymorphic systems from the ICSD. Hans Seifert is thanked for special assistance. I am grateful to Priscilla Grew for her comments on an earlier draft of the manuscript and for her encouragement overall. I also thank an anonymous reviewer for constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward S. Grew.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grew, E.S. Polymorphism in the Sr-Bi System. J. Phase Equilib. Diffus. 42, 818–823 (2021). https://doi.org/10.1007/s11669-021-00925-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-021-00925-6

Keywords

Navigation