Skip to main content
Log in

Second-order constitutive theory of fluids

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

A Correction to this article was published on 02 November 2022

This article has been updated

Abstract

A fully second-order continuum theory of fluids is developed. The conventional balance equations of mass, linear momentum, energy and entropy are used. Constitutive equations are assumed to depend on density, temperature and velocity, and their derivatives up to second order. The principle of equipresence is used along with the Coleman–Noll procedure to derive restrictions on the constitutive equations by utilizing the second law. The entropy flux is not assumed to be equal to the heat flux over the temperature. We obtain explicit results for all constitutive quantities up to quadratic nonlinearity so as to satisfy the Clausius–Duhem inequality. Our results are shown to be consistent but more general than other published results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Agrawal, A., Kushwaha, H.M., Jadhav, R.S.: Microscale Flow and Heat Transfer. Springer, Cham (2020)

    Book  Google Scholar 

  2. Ahmad, F.: Invariants of a Cartesian tensor of rank 3. Arch. Mech. 63(4), 383–392 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Balakrishnan, R.: An approach to entropy consistency in second-order hydrodynamic equations. J. Fluid Mech. 503, 201–245 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bobylev, A.: Poincare theorem: boltzmann-equation and korteweg-devries-type equations. Doklady Akademii Nauk SSSR 256(6), 1341–1346 (1981)

    ADS  MathSciNet  Google Scholar 

  5. Bobylev, A.: The Chapman–Enskog and Grad methods of solution of the Boltzmann-equation. Doklady Akademii Nauk SSSR 262(1), 71–75 (1982)

    ADS  MathSciNet  Google Scholar 

  6. Brau, C.: Kinetic theory of polyatomic gases: models for the collision processes. Phys. Fluids 10, 48–55 (1967)

    Article  ADS  Google Scholar 

  7. Brillouin, M.: Molecular theory of gases: diffusion of movement and energy. Annales de Chimie et de Physique 20, 440–485 (1900)

    Google Scholar 

  8. Burnett, D.: The distribution of velocities in a slightly non-uniform gas. Proc. Lond. Math. Soc. 39, 385–430 (1935)

    Article  MathSciNet  MATH  Google Scholar 

  9. Burnett, D.: The distribution of molecular velocities and the mean motion in a non uniform gas. Proc. Lond. Math. Soc. 40, 382–435 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chapman, S., Cowling, T.: The Mathematical Theory on Non-uniform Gases, 3rd edn. Cambridge University Press, Cambridge (1970)

    MATH  Google Scholar 

  11. Chen, J.: Extension of nonlinear Onsager theory of irreversibility. Acta Mechanica 224, 31533158 (2013)

    Article  MathSciNet  Google Scholar 

  12. Chen, Y., Hu, S., Qi, L., Zou, W.: Irreducible function bases of isotropic invariants of a third order three-dimensional symmetric and traceless tensor. Front. Math. China 14(1), 1–16 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, Z., Liu, J., Qi, L., Zheng, Q., Zou, W.: An irreducible function basis of isotropic invariants of a third order three-dimensional symmetric tensor. J. Math. Phys. 59(8), 081703 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Coleman, B., Markovitz, H., Noll, W.: Viscometric Flows of Non-Newtonian Fluids. Springer, Berlin (1966)

    Book  MATH  Google Scholar 

  15. Coleman, B., Noll, W.: Foundations of linear viscoelasticity. Rev. Mod. Phys. 33(2), 239–249 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Coleman, B., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13(3), 167–178 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  17. Comeaux, K., Chapman, D., MacCormack, R.: An analysis of the Burnett equations based on the second law of thermodynamics. AIAA-95-0415. In: 33rd AIAA Aerospace Sciences Meeting and Exhibit, pp. 1–19. Reno, NV (1995)

  18. Dunn, J., Serrin, J.: On the thermomechanics of interstitial working. Arch. Ration. Mech. Anal. 88(2), 95–133 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  19. Eringen, A.C.: Mechanics of Continua. R.E. Krieger Publishing Company Inc, Melbourne (1980)

    MATH  Google Scholar 

  20. Eringen, A.C.: Microcontinuum Field Theories I: Foundations and Solids. Springer, New York (1999)

    Book  MATH  Google Scholar 

  21. Eringen, A.C.: Microcontinuum Field Theories II: Fluent Media. Springer, New York (2001)

    MATH  Google Scholar 

  22. Ferziger, J.H., Kaper, H.G.: Mathematical Theory of Transport Processes in Gases. North-Holland Publishing Company, Amsterdam (1972)

    Google Scholar 

  23. Fiscko, K., Chapman, D.: Comparison of burnett, super-burnett and monte carlo solutions for hypersonic shock structure. In: Muntz, D.W.E.P., Campbell, D. (eds.) Progress in Aeronautics and Astronautics, vol. 118, pp. 374–395. AIAA, Washington, DC (1989)

    Google Scholar 

  24. Gorban, A.N., Karlin, I.V.: Beyond Navier–Stokes equations: capillarity of ideal gas. Contemp. Phys. 58(1), 70–90 (2017)

    Article  ADS  Google Scholar 

  25. Grad, H.: On the kinetic theory of rarefied gases. Commun. Pur. Appl. Math. 2(4), 331–407 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  26. Huang, F., Wang, Y., Wang, Y., Yang, T.: Justification of Limit for the Boltzmann Equation Related to Korteweg Theory. Q. Appl. Math. 74(4), 719–764 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jin, S., Slemrod, M.: Regularization of the Burnett equations via relaxation. J. Stat. Phys. 103(5–6), 1009–1033 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kim, Y.J., Lee, M.G., Slemrod, M.: Thermal creep of a rarefied gas on the basis of non-linear Korteweg-theory. Arch. Ration. Mech. Anal. 215(2), 353–379 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Korteweg, D.: Sur la forme que prennent les equations du mouvements des fluides si l‘on tient compte des forces capillaires cansees par des variations de densite considerables mais continues et sur la theorie de la capillarite dans l‘hypothese dune variation continue de la densite. Neerl. Sci. Exactes Nat. Ser. II(6), 1–24 (1901)

    MATH  Google Scholar 

  30. Liu, I.S.: Continuum Mechanics. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  31. Liu, I.S., Salvador, J.: Hyperbolic system for viscous fluids and simulation of shock tube flows. Continuum Mech. Therm. 2(3), 179–197 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Lumpkin, F., Chapman, D.: Accuracy of the Burnett equations for hypersonic real gas flows. J. Thermophys. Heat Tr. 6(3), 419–425 (1992)

    Article  ADS  Google Scholar 

  33. Maxwell, J.: On the stresses in rarified gases arising from inequalities of temperature. Phil. Trans. Roy. Soc. (London) 170, 231–256 (1879)

    Article  ADS  MATH  Google Scholar 

  34. Müller, I.: On Entropy Inequality. Arch. Ration. Mech. Anal. 26(2), 118–141 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  35. Müller, I.: Thermodynamics. Pitman Publishing Limited, London (1985)

    MATH  Google Scholar 

  36. Paolucci, S.: Continuum Mechanics and Thermodynamics of Matter. Cambridge University Press, Cambridge (2016)

    Book  MATH  Google Scholar 

  37. Paolucci, S., Paolucci, C.: A second-order continuum theory of fluids. J. Fluid Mech. 846, 686–710 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Piechor, K.: Non-local Korteweg stresses from kinetic theory point of view. Arch. Mech. 60(1), 23–58 (2008)

    MathSciNet  MATH  Google Scholar 

  39. Rana, A.S., Gupta, V.K., Struchtrup, H.: Coupled constitutive relations: a second law based higher-order closure for hydrodynamics. Proc. R. Soc. Math. Phys. Eng. Sci. (2018). https://doi.org/10.1098/rspa.2018.0323

    Article  MATH  Google Scholar 

  40. Reese, J., Woods, L., Thivet, F., Candel, S.: A second-order description of shock structure. J. Comp. Phys. 117(2), 240–250 (1995)

    Article  ADS  MATH  Google Scholar 

  41. Reinecke, S., Kremer, G.: Method of moments of grad. Phys. Rev. A 42(2), 815–820 (1990)

    Article  ADS  Google Scholar 

  42. Reinecke, S., Kremer, G.: Burnett‘s equations from a (13+9N)-field theory. Continuum Mech. Thermodyn. 8(2), 121–130 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. She, R., Sather, N.: Kinetic theory of polyatomic gases. J. Chem. Phys. 47, 4978–4993 (1967)

    Article  ADS  Google Scholar 

  44. Slemrod, M.: Chapman-Enskog \(\Rightarrow \) viscosity-capillarity. Q. Appl. Math. 70(3), 613–624 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Struchtrup, H.: Macroscopic Transport Equations for Rarefied Gas Flows. Springer, Berlin (2005)

    Book  MATH  Google Scholar 

  46. Struchtrup, H., Torrilhon, M.: Regularization of Grad‘s 13 moment equations: derivation and linear analysis. Phys. Fluids 15(9), 2668–2680 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Taniguchi, S., Arima, T., Ruggeri, T., Sujiyama, M.: Shock wave structure in a rarefied polyatomic gas based on extended thermodynamics. Acta Appl. Math. 132(1), 583–593 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Taniguchi, S., Arima, T., Ruggeri, T., Sujiyama, M.: Thermodynamic theory of the shock wave structure in a rarefied polyatomic gas: beyond the Bethe–Teller theory. Phys. Rev. E 89, 013025 (2014)

    Article  ADS  Google Scholar 

  49. Torrilhon, M., Struchtrup, H.: Regularized 13-moment equations: shock structure calculations and comparison to Burnett models. J. Fluid Mech. 513, 171–198 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Truesdell, C.: A new definition of a fluid. Tech. Rep. 9487, U.S. Naval Ord. Lab. Mem. (1948)

  51. Truesdell, C.: A new definition of a fluid II: The Maxwellian fluid. Tech. Rep. P 355, U.S. Naval Ord. Lab. Rep. (1949)

  52. Truesdell, C.: A new definition of a fluid: the Maxwellian fluid. J. de Math. Pures Appl. 30, 111–158 (1951)

    MathSciNet  MATH  Google Scholar 

  53. Truesdell, C.: The mechanical foundations of elasticity and fluid dynamics. J. Rat. Mech. An. 1, 125–300 (1952)

    MathSciNet  MATH  Google Scholar 

  54. Truesdell, C., Muncaster, R.: Fundamentals of Maxwell‘s Kinetic Theory of a Simple Monatomic Gas. Academic Press, New York (1980)

    Google Scholar 

  55. Truesdell, C., Noll, W.: The Non-linear Field Theories of Mechanics, vol. 125, 3rd edn. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  56. Wang Chang, C., Uhlenbeck, G.: On the transport phenomena in rarified gases. In: de Boer, J., Uhlenbeck, G. (eds.) Studies in Statistical Mechanics, vol. V, pp. 1–17. Elsevier, New York (1970)

    Google Scholar 

  57. Weiss, W.: Continuous shock structure in extended thermodynamics. Phys. Rev. E 52(6), R5760–R5763 (1995)

    Article  ADS  Google Scholar 

  58. Woods, L.: On the thermodynamics of non-linear constitutive relations in gasdynamics. J. Fluid Mech. 101, 225–241 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Woods, L.: Frame-indifferent kinetic-theory. J. Fluid Mech. 136, 423–433 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Woods, L.: An Introduction to the Kinetic Theory of Gases and Magnetoplasmas. Oxford University Press, Oxford (1993)

    MATH  Google Scholar 

  61. Zheng, Q.S.: On the representations for isotropic vector-valued, symmetric tensor-valued and skew-symmetric tensor-valued functions. Int. J. Eng. Sci. 31(7), 1013–1024 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  62. Zheng, Q.S.: Theory of representations for tensor functions: a unified invariant approach to constitutive equations. Appl. Mech. Rev. 47(11), 545–587 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Paolucci.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The following tables are limited to quadratic terms and are obtained from those given in Tables 5.1–5.3 of Paolucci [36] (see also [19, 30, 61, 62]), while those associated with the third rank tensor are given by Ahmad [2] (see also [12, 13]).

Table 6 Complete and irreducible function basis of isotropic scalar invariants of vectors \(u_{i}\) and \(v_{i}\), symmetric tensors \(A_{ij}\) and \(B_{ij}\), and third rank tensor \(H_{ijk}\), up to quadratic order
Table 7 Generators for a vector-valued isotropic function of vector \(u_{i}\), symmetric tensor \(A_{ij}\), and third rank tensor \(H_{ijk}\), up to quadratic order
Table 8 Generators for a symmetric tensor-valued isotropic function of vectors \(u_{i}\) and \(v_{i}\), symmetric tensors \(A_{ij}\) and \(B_{ij}\), and third rank tensor \(H_{ijk}\), up to quadratic order

Appendix B

Below we provide the general quadratic nonlinear forms of the constitutive quantities \(\eta \), \(h_{i}\) and \(\sigma _{ij}\) obtained using Tables 6, 7 and 8:

$$\begin{aligned} \eta&= \eta (\rho , \theta , r_{j}, R_{jk}, g_{j}, G_{jk}, A^{(1)}_{jk}, H_{jkl}, {\dot{\theta }}, \ddot{\theta }, {\dot{\theta }}_{,j}, A^{(2)}_{jk}), \end{aligned}$$
(B.1)
$$\begin{aligned}&=\nu _{0} + \nu _{1} {\dot{\theta }} + \frac{1}{2}\, \nu _{2} {\dot{\theta }}^{2} + \nu _{3} \ddot{\theta } + \frac{1}{2}\, \nu _{4} \ddot{\theta }^{2} + \nu _{5} {\dot{\theta }}\,\ddot{\theta } + \frac{1}{2}\, \nu _{6} r_{k} r_{k} + \frac{1}{2}\, \nu _{7} g_{k} g_{k} + \frac{1}{2}\, \nu _{8} {\dot{\theta }}_{,k} {\dot{\theta }}_{k} \nonumber \\&\quad +\nu _{9} r_{k} g_{k} + \nu _{10} r_{k} {\dot{\theta }}_{,k} + \nu _{11} g_{k} {\dot{\theta }}_{,k} + \nu _{12} R_{kk} + \nu _{13} G_{kk} + \nu _{14} A^{(1)}_{kk} + \nu _{15} A^{(2)}_{kk} + \nu ^{(16)} {\dot{\theta }}\, R_{kk} \nonumber \\&\quad +\nu _{17} {\dot{\theta }}\, G_{kk} + \nu _{18} {\dot{\theta }}\, A^{(1)}_{kk} + \nu _{19} {\dot{\theta }}\, A^{(2)}_{kk} + \nu _{20} \ddot{\theta }\, R_{kk} + \nu _{21} \ddot{\theta }\, G_{kk} + \nu _{22} \ddot{\theta }\, A^{(1)}_{kk} \nonumber \\&\quad +\nu _{23} \ddot{\theta }\, A^{(2)}_{kk} + \frac{1}{2}\, \nu _{24} R_{kk}^{2} + \frac{1}{2}\, \nu _{25} G_{kk}^{2} + \frac{1}{2}\, \nu _{26} {A^{(1)}_{kk}}^{2} + \frac{1}{2}\, \nu _{27} {A^{(2)}_{kk}}^{2} + \nu _{28} R_{kl} R_{kl} \nonumber \\&\quad +\nu _{29} G_{kl} G_{kl} + \nu _{30} A^{(1)}_{kl} A^{(1)}_{kl} + \nu _{31} A^{(2)}_{kl} A^{(2)}_{kl} + \nu _{32} H_{llk} H_{mmk} + \nu _{33} H_{kll} H_{kmm} \nonumber \\&\quad +\nu _{34} H_{klm} H_{klm} + \nu _{35} H_{klm} H_{lkm} + \nu _{36} H_{llk} H_{kmm} + \nu _{37} R_{kk} G_{ll} + \nu _{38} R_{kk} A^{(1)}_{ll} \nonumber \\&\quad +\nu _{39} R_{kk} A^{(2)}_{ll} + \nu _{40} G_{kk} A^{(1)}_{ll} + \nu _{41} G_{kk} A^{(2)}_{ll} + \nu _{42} A^{(1)}_{kk} A^{(2)}_{ll} + \nu _{43} R_{kl} G_{kl} \nonumber \\&\quad +\nu _{44} R_{kl} A^{(1)}_{kl} + \nu _{45} R_{kl} A^{(2)}_{kl} + \nu _{46} G_{kl} A^{(1)}_{kl} + \nu _{47} G_{kl} A^{(2)}_{kl} + \nu _{48} A^{(1)}_{kl} A^{(2)}_{kl} \nonumber \\&\quad +\nu _{49} r_{k} H_{kll} + \nu _{50} r_{k} H_{llk} + \nu _{51} g_{k} H_{kll} + \nu _{52} g_{k} H_{llk} + \nu _{53} {\dot{\theta }}_{,k} H_{kll} + \nu _{54} {\dot{\theta }}_{,k} H_{llk}, \end{aligned}$$
(B.2)
$$\begin{aligned} h_{i}&= h_{i}(\rho , \theta , r_{j}, R_{jk}, g_{j}, G_{jk}, A^{(1)}_{jk}, H_{jkl}, {\dot{\theta }}, \ddot{\theta }, {\dot{\theta }}_{,j}, A^{(2)}_{jk}), \end{aligned}$$
(B.3)
$$\begin{aligned}&=\left[ \left( \gamma _{0} + \gamma _{1} {\dot{\theta }} + \gamma _{2} \ddot{\theta } + \gamma _{3} R_{kk} + \gamma _{4} G_{kk} + \gamma _{5} A^{(1)}_{kk} + \gamma _{6} A^{(2)}_{kk} \right) \delta _{il}\, \right. \nonumber \\&\quad +\left. \gamma _{7} R_{il} + \gamma _{8} G_{il} + \gamma _{9} A^{(1)}_{il} + \gamma _{10} A^{(2)}_{il} \right] r_{l}\, \nonumber \\&\quad +\left[ \left( \gamma _{11} + \gamma _{12} {\dot{\theta }} + \gamma _{13} \ddot{\theta } + \gamma _{14} R_{kk} + \gamma _{15} G_{kk} + \gamma _{16} A^{(1)}_{kk} + \gamma _{17} A^{(2)}_{kk} \right) \delta _{il}\, \right. \nonumber \\&\quad + \left. \gamma _{18} R_{il} + \gamma _{19} G_{il} + \gamma _{20} A^{(1)}_{il} + \gamma _{21} A^{(2)}_{il} \right] g_{l}\, \nonumber \\&\quad +\left[ \left( \gamma _{22} + \gamma _{23} {\dot{\theta }} + \gamma _{24} \ddot{\theta } + \gamma _{25} R_{kk} + \gamma _{26} G_{kk} + \gamma _{27} A^{(1)}_{kk} + \gamma _{28} A^{(2)}_{kk} \right) \delta _{il}\, \right. \nonumber \\&\quad +\left. \gamma _{29} R_{il} + \gamma _{30} G_{il} + \gamma _{31} A^{(1)}_{il} + \gamma _{32} A^{(2)}_{il} \right] {\dot{\theta }}_{,l}\, \nonumber \\&\quad +\left( \gamma _{33} + \gamma _{34} {\dot{\theta }} + \gamma _{35} \ddot{\theta } + \gamma _{36} R_{kk} + \gamma _{37} G_{kk} + \gamma _{38} A^{(1)}_{kk} + \gamma _{39} A^{(2)}_{kk} \right) H_{ill}\, \nonumber \\&\quad +\left( \gamma _{40} + \gamma _{41} {\dot{\theta }} + \gamma _{42} \ddot{\theta } + \gamma _{43} R_{kk} + \gamma _{44} G_{kk} + \gamma _{45} A^{(1)}_{kk} + \gamma _{46} A^{(2)}_{kk} \right) H_{lli}\, \nonumber \\&\quad +\left( \gamma _{47} H_{ijk} + \gamma _{48} H_{jki} \right) R_{jk} + \left( \gamma _{49} H_{ijk} + \gamma _{50} H_{jki} \right) G_{jk} + \left( \gamma _{51} H_{ijk} + \gamma _{52} H_{jki} \right) A^{(1)}_{jk}\, \nonumber \\&\quad +\left( \gamma _{53} H_{ijk} + \gamma _{54} H_{jki} \right) A^{(2)}_{jk}, \end{aligned}$$
(B.4)
$$\begin{aligned} \sigma _{ij}&= \sigma _{i j}(\rho , \theta , r_{j}, R_{jk}, g_{j}, G_{jk}, A^{(1)}_{jk}, H_{jkl}, {\dot{\theta }}, \ddot{\theta }, {\dot{\theta }}_{,j}, A^{(2)}_{jk}), \end{aligned}$$
(B.5)
$$\begin{aligned}&= \left( \alpha _{0} + \alpha _{1} {\dot{\theta }} + \frac{1}{2}\, \alpha _{2} {\dot{\theta }}^{2} + \alpha _{3} \ddot{\theta } + \frac{1}{2}\, \alpha _{4} \ddot{\theta }^{2} + \alpha _{5} {\dot{\theta }}\,\ddot{\theta } + \frac{1}{2}\, \alpha _{6} r_{k} r_{k} + \frac{1}{2}\, \alpha _{7} g_{k} g_{k} \right. \nonumber \\&\quad +\frac{1}{2}\, \alpha _{8} {\dot{\theta }}_{,k} {\dot{\theta }}_{,k} + \alpha _{9} r_{k} g_{k} + \alpha _{10} r_{k} {\dot{\theta }}_{,k} + \alpha _{11} g_{k} {\dot{\theta }}_{,k} + \alpha _{12} R_{kk} + \alpha _{13} G_{kk} + \alpha _{14} A^{(1)}_{kk} \nonumber \\&\quad +\alpha _{15} A^{(2)}_{kk} + \alpha _{16} {\dot{\theta }}\, R_{kk} + \alpha _{17} {\dot{\theta }}\, G_{kk} + \alpha _{18} {\dot{\theta }}\, A^{(1)}_{kk} + \alpha _{19} {\dot{\theta }}\, A^{(2)}_{kk} \nonumber \\&\quad +\alpha _{20} \ddot{\theta }\, R_{kk} + \alpha _{21} \ddot{\theta }\, G_{kk} + \alpha _{22} \ddot{\theta }\, A^{(1)}_{kk} + \alpha _{23} \ddot{\theta }\, A^{(2)}_{kk} + \frac{1}{2}\, \alpha _{24} R_{kk}^{2} \nonumber \\&\quad +\frac{1}{2}\, \alpha _{25} G_{kk}^{2} + \frac{1}{2}\, \alpha _{26} {A^{(1)}_{kk}}^{2} + \frac{1}{2}\, \alpha _{27} {A^{(2)}_{kk}}^{2} + \alpha _{28} R_{kl} R_{kl} + \alpha _{29} G_{kl} G_{kl} \nonumber \\&\quad +\alpha _{30} A^{(1)}_{kl} A^{(1)}_{kl} + \alpha _{31} A^{(2)}_{kl} A^{(2)}_{kl} + \alpha _{32} H_{llk} H_{mmk} + \alpha _{33} H_{kll} H_{kmm} + \alpha _{34} H_{klm} H_{klm} \nonumber \\&\quad +\alpha _{35} H_{klm} H_{lkm} + \alpha _{36} H_{llk} H_{kmm} + \alpha _{37} R_{kk} G_{ll} + \alpha _{38} R_{kk} A^{(1)}_{ll} + \alpha _{39} R_{kk} A^{(2)}_{ll} \nonumber \\&\quad +\alpha _{40} G_{kk} A^{(1)}_{ll} + \alpha _{41} G_{kk} A^{(2)}_{ll} + \alpha _{42} A^{(1)}_{kk} A^{(2)}_{ll} + \alpha _{43} R_{kl} G_{kl} + \alpha _{44} R_{kl} A^{(1)}_{kl} \nonumber \\&\quad +\alpha _{45} R_{kl} A^{(2)}_{kl} + \alpha _{46} G_{kl} A^{(1)}_{kl} + \alpha _{47} G_{kl} A^{(2)}_{kl} + \alpha _{48} A^{(1)}_{kl} A^{(2)}_{kl} + \alpha _{49} r_{k} H_{kll} \nonumber \\&\quad +\alpha _{50} r_{k} H_{llk} + \alpha _{51} g_{k} H_{kll} + \alpha _{52} g_{k} H_{llk} + \alpha _{53} {\dot{\theta }}_{,k} H_{kll} + \alpha _{54} {\dot{\theta }}_{,k} H_{llk} \bigg ) \delta _{ij}\, \nonumber \\&\quad +\left( \alpha _{55} + \alpha _{56} {\dot{\theta }} + \alpha _{57} \ddot{\theta } + \alpha _{58} R_{kk} + \alpha _{59} G_{kk} + \alpha _{60} A^{(1)}_{kk} + \alpha _{61} A^{(2)}_{kk} \right) R_{ij} \nonumber \\&\quad +\left( \alpha _{62} + \alpha _{63} {\dot{\theta }} + \alpha _{64} \ddot{\theta } + \alpha _{65} R_{kk} + \alpha _{66} G_{kk} + \alpha _{67} A^{(1)}_{kk} + \alpha _{68} A^{(2)}_{kk} \right) G_{ij} \nonumber \\&\quad +\left( \alpha _{69} + \alpha _{70} {\dot{\theta }} + \alpha _{71} \ddot{\theta } + \alpha _{72} R_{kk} + \alpha _{73} G_{kk} + \alpha _{74} A^{(1)}_{kk} + \alpha _{75} A^{(2)}_{kk} \right) A^{(1)}_{ij} \nonumber \\&\quad +\left( \alpha _{76} + \alpha _{77} {\dot{\theta }} + \alpha _{78} \ddot{\theta } + \alpha _{79} R_{kk} + \alpha _{80} G_{kk} + \alpha _{81} A^{(1)}_{kk} + \alpha _{82} A^{(2)}_{kk} \right) A^{(1)}_{ij} \nonumber \\&\quad +\alpha _{83} r_{i} r_{j} + \alpha _{84} g_{i} g_{j} + \alpha _{85} {\dot{\theta }}_{,i} {\dot{\theta }}_{,j} + \alpha _{86} \overline{r_{i} g_{j}} + \alpha _{87} \overline{r_{i} {\dot{\theta }}_{,j}} + \alpha _{88} \overline{g_{i} {\dot{\theta }}_{,j}} + \alpha _{89} R_{ik} R_{kj} \nonumber \\&\quad +\alpha _{90} G_{ik} G_{kj} + \alpha _{91} A^{(1)}_{ik} A^{(1)}_{kj} + \alpha _{92} A^{(2)}_{ik} A^{(2)}_{kj} + \alpha _{93} H_{kki} H_{llj} + \alpha _{94} H_{ikk} H_{jll} \nonumber \\&\quad + \alpha _{95} H_{kil} H_{kjl} + \alpha _{96} H_{ikl} H_{jkl} + \alpha _{97} \overline{H_{kki} H_{jll}} + \alpha _{98} \overline{H_{ikl} H_{klj}} + \alpha _{99} \overline{R_{ik} G_{kj}} \nonumber \\&\quad +\alpha _{100} \overline{R_{ik} A^{(1)}_{kj}} + \alpha _{101} \overline{R_{ik} A^{(2)}_{kj}} + \alpha _{102} \overline{G_{ik} A^{(1)}_{kj}} + \alpha _{103} \overline{G_{ik} A^{(2)}_{kj}} + \alpha _{104} \overline{A^{(1)}_{ik} A^{(2)}_{kj}} \nonumber \\&\quad +\alpha _{105} \overline{r_{k} H_{ijk}} + \alpha _{106} r_{k} H_{kij} + \alpha _{107} \overline{g_{k} H_{ijk}} + \alpha _{108} g_{k} H_{kij} + \alpha _{109} \overline{{\dot{\theta }}_{,k} H_{ijk}} \nonumber \\&\quad +\alpha _{110} {\dot{\theta }}_{,k} H_{kij}. \end{aligned}$$
(B.6)

Appendix C

We may write the following symmetric matrices as sums of traceless and diagonal matrices:

$$\begin{aligned} A^{(1)}_{ij} = A^{(1)}_{\left\langle ij\right\rangle } + \frac{1}{3}\, A^{(1)}_{ll} \delta _{ij} \qquad \mathrm{and} \qquad A^{(1)}_{\left\langle ij\right\rangle } A^{(1)}_{\left\langle jk\right\rangle } = A^{(1)}_{\left\langle \left\langle ij\right\rangle \right. } A^{(1)}_{\left. \left\langle jk\right\rangle \right\rangle } + \frac{1}{3}\, A^{(1)}_{\left\langle lj\right\rangle } A^{(1)}_{\left\langle jl\right\rangle } \delta _{ik}. \end{aligned}$$
(C.1)

With (C.1), we have

$$\begin{aligned} A^{(1)}_{\left\langle ij\right. } A^{(1)}_{\left. jk\right\rangle } = A^{(1)}_{ij} A^{(1)}_{jk} - \frac{1}{3}\, A^{(1)}_{lj} A^{(1)}_{jl} \delta _{ik} = A^{(1)}_{\left\langle \left\langle ij\right\rangle \right. } A^{(1)}_{\left. \left\langle jk\right\rangle \right\rangle } + \frac{2}{3}\, A^{(1)}_{ll} A^{(1)}_{\left\langle ik\right\rangle }. \end{aligned}$$
(C.2)

Also, with (C.1), (C.2) and (12), and noting that \(A^{(1)}_{lj} W_{jl} = 0\), we obtain

$$\begin{aligned} A^{(1)}_{\left\langle ij\right. } L_{\left. jk\right\rangle } = \frac{1}{2} A^{(1)}_{\left\langle \left\langle ij\right\rangle \right. } A^{(1)}_{\left. \left\langle jk\right\rangle \right\rangle } + \frac{1}{3}\, A^{(1)}_{ll} A^{(1)}_{\left\langle ik\right\rangle } + A^{(1)}_{\left\langle ij \right\rangle } W_{jk} + \frac{1}{3}\, A^{(1)}_{ll} W_{ik}. \end{aligned}$$
(C.3)

Subsequently, from (11) and (C.3), and noting that \(W_{ji} = - W_{ij}\), it follows that

$$\begin{aligned} A^{(2)}_{\left\langle ij \right\rangle }&= {\dot{A}}^{(1)}_{\left\langle ij \right\rangle } + A^{(1)}_{\left\langle il\right. } L_{\left. lj\right\rangle } + A^{(1)}_{\left\langle jl\right. } L_{\left. li\right\rangle } \nonumber \\&= {\dot{A}}^{(1)}_{\left\langle ij \right\rangle } + A^{(1)}_{\left\langle \left\langle il\right\rangle \right. } A^{(1)}_{\left. \left\langle lj\right\rangle \right\rangle } + \frac{2}{3} A^{(1)}_{ll} A^{(1)}_{\left\langle ij \right\rangle } - W_{il} A^{(1)}_{\left\langle lj \right\rangle } + A^{(1)}_{\left\langle il \right\rangle } W_{lj}. \end{aligned}$$
(C.4)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paolucci, S. Second-order constitutive theory of fluids. Continuum Mech. Thermodyn. 34, 185–215 (2022). https://doi.org/10.1007/s00161-021-01053-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-021-01053-9

Keywords

Navigation