Skip to main content
Log in

Comprehensive Transcriptome Analyses in Sea Louse Reveal Novel Delousing Drug Responses Through MicroRNA regulation

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The role of miRNAs in pharmacological responses through gene regulation related to drug metabolism and the detoxification system has recently been determined for terrestrial species. However, studies on marine ectoparasites have scarcely been conducted to investigate the molecular mechanisms of pesticide resistance. Herein, we explored the sea louse Caligus rogercresseyi miRNome responses exposed to delousing drugs and the interplaying with coding/non-coding RNAs. Drug sensitivity in sea lice was tested by in vitro bioassays for the pesticides azamethiphos, deltamethrin, and cypermethrin. Ectoparasites strains with contrasting susceptibility to these compounds were used. Small-RNA sequencing was conducted, identifying 2776 novel annotated miRNAs, where 163 mature miRNAs were differentially expressed in response to the drug testing. Notably, putative binding sites for miRNAs were found in the ADME genes associated with the drugs’ absorption, distribution, metabolism, and excretion. Interactions between the miRNAs and long non-coding RNAs (lncRNAs) were also found, suggesting putative molecular gene regulation mechanisms. This study reports putative miRNAs correlated to the coding/non-coding RNAs modulation, revealing novel pharmacological mechanisms associated with drug resistance in sea lice species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aaen SM, Helgesen KO, Bakke MJ, Kaur K, Horsberg TE (2015) Drug resistance in sea lice: a threat to salmonid aquaculture. Trends Parasitol 31:72–81

    Article  CAS  PubMed  Google Scholar 

  • Afonso-Grunz F, Müller S (2015) Principles of miRNA–mRNA interactions: beyond sequence complementarity. Cell Mol Life Sci 72:3127–3141

    Article  CAS  PubMed  Google Scholar 

  • Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Yu X, Hu S, Yu J (2009) A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinformatics 7:147–154

    Article  CAS  PubMed  Google Scholar 

  • Carmona-Antoñanzas G, Bekaert M, Humble JL, Boyd S, Roy W, Bassett DI, Houston RD, Gharbi K, Bron JE, Sturm A (2017) Maternal inheritance of deltamethrin resistance in the salmon louse Lepeophtheirus salmonis (Krøyer) is associated with unique mtDNA haplotypes. PLoS One 12

  • Chavez-Mardones J, Gallardo-Escárate C (2014) Deltamethrin (AlphaMax™) reveals modulation of genes related to oxidative stress in the ectoparasite Caligus rogercresseyi: implications on delousing drug effectiveness. Aquacul 433:421–429

  • Chávez-Mardones J, Gallardo-Escárate C (2015) Next-generation transcriptome profiling of the salmon louse Caligus rogercresseyi exposed to deltamethrin (AlphaMax™): discovery of relevant genes and sex-related differences. Mar Biotechnol 17:793–810

  • Christopher AF, Kaur RP, Kaur G, Kaur A, Gupta V, Bansal P (2016) MicroRNA therapeutics: discovering novel targets and developing specific therapy. Perspect Clin Res 7:68

    Article  PubMed  PubMed Central  Google Scholar 

  • Colmegna B, Morosi L, D’incalci M (2017) Molecular and pharmacological mechanisms of drug resistance: an evolving paradigm. MDR Cancer Therapy Springer

  • Computing R (2013) R: A language and environment for statistical computing

  • Costello MJ (2009) The global economic cost of sea lice to the salmonid farming industry. J Fish Dis 32:115–118

    Article  PubMed  Google Scholar 

  • Di Fagagna FDA (2008) Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer 8:512–522

    Article  CAS  Google Scholar 

  • Dresdner J, Chávez C, Quiroga M, Jiménez D, Artacho P, Tello A (2019) Impact of Caligus treatments on unit costs of heterogeneous salmon farms in Chile. Aquacult Econ Manage 23:1–27

    Article  Google Scholar 

  • Etebari K, Afrad M, Tang B, Silva R, Furlong M, Asgari S (2018) Involvement of microRNA miR-2b-3p in regulation of metabolic resistance to insecticides in Plutella xylostella. Insect Mol Biol 27:478–491

    Article  CAS  PubMed  Google Scholar 

  • Etebari K, Asgari S (2014) Accuracy of microRNA discovery pipelines in non-model organisms using closely related species genomes. PLoS One 9

  • Etebari K, Furlong MJ, Asgari S (2015) Genome wide discovery of long intergenic non-coding RNAs in Diamondback moth (Plutella xylostella) and their expression in insecticide-resistant strains. Sci Rep 5:14642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flintoft L (2013) Non-coding RNA: Structure and function for lncRNAs. Nat Rev Genet 14:598

    Article  CAS  PubMed  Google Scholar 

  • Galasso M, Sana ME, Volinia S (2010) Non-coding RNAs: a key to future personalized molecular therapy?. Genome Medicine 2:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gallardo-Escárate C, Valenzuela-Muñoz V, Boltaña S, Nuñez-Acuña G, Valenzuela-Miranda D, Gonçalves A, Détrée C, Tarifeño-Saldivia E, Farlora R, Roberts S (2017) The Caligus rogercresseyi miRNome: discovery and transcriptome profiling during the sea lice ontogeny. Agri Gene 4:8–22

    Article  Google Scholar 

  • Gallardo-Escárate C, Valenzuela-Muñoz V, Núñez-Acuña G (2014) RNA-Seq analysis using de novo transcriptome assembly as a reference for the salmon louse Caligus rogercresseyi. PLoS One 9:e92239

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldman B (2003) Multidrug resistance: can new drugs help chemotherapy score against cancer?. J Natl Cancer Inst 95:255–255

    Article  PubMed  Google Scholar 

  • Griffiths-Jones S, Grocock R, Van Dongen S, Bateman A, Enright A (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–D144

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Zhao Y, Yang S, Zhang H, Chen F (2014) An integrated analysis of miRNA, lncRNA, and mRNA expression profiles. Biomed Res Int 2014:345605

  • Hackenberg M, Sturm M, Langenberger D, Falcon-Perez JM, Aransay AM (2009) miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments. Nucleic Acids Res 37:W68–W76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haenisch S, Cascorbi I (2012) miRNAs as mediators of drug resistance. Epigenomics 4:369–381

    Article  CAS  PubMed  Google Scholar 

  • Hong S, Guo Q, Wang W, Hu S, Fang F, Lv Y, Yu J, Zou F, Lei Z, Ma K (2014) Identification of differentially expressed microRNAs in Culex pipiens and their potential roles in pyrethroid resistance. Insect Biochem Mol Biol 55:39–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ioannidis J, Donadeu FX (2016) Circulating miRNA signatures of early pregnancy in cattle. BMC Genomics 17:184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kidner CA, Martienssen RA (2005) The developmental role of microRNA in plants. Curr Opin Plant Biol 8:38–44

    Article  CAS  PubMed  Google Scholar 

  • Kovalchuk O, Filkowski J, Meservy J, Ilnytskyy Y, Tryndyak VP, Vasyl’f C, Pogribny IP (2008) Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther 7:2152–2159

    Article  CAS  PubMed  Google Scholar 

  • Krüger J, Rehmsmeier M (2006) RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 34:W451–W454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lei Z, Lv Y, Wang W, Guo Q, Zou F, Hu S, Fang F, Tian M, Liu B, Liu X (2015) MiR-278-3p regulates pyrethroid resistance in Culex pipiens pallens. Parasitol Res 114:699–706

    Article  PubMed  Google Scholar 

  • Li X, Guo L, Zhou X, Gao X, Liang P (2015) miRNAs regulated overexpression of ryanodine receptor is involved in chlorantraniliprole resistance in Plutella xylostella (L.). Sci Rep 5:1–9

    Google Scholar 

  • Lipovich L, Johnson R, Lin CY (2010) microRNA underdogs in a microRNA world: evolutionary, regulatory, and biomedical significance of mammalian long non-protein-coding RNA. Biochim Biophys Acta(BBA) Gene Regul Mech 1799:597–615

  • Ma H, Hao Y, Dong X, Gong Q, Chen J, Zhang J, Tian W (2012) Molecular Mechanisms and Function Prediction of Long Noncoding RNA. Sci World J 2012. https://doi.org/10.1100/2012/541786

  • Marín S, Ibarra R, Medina M, Jansen P (2015) Sensitivity of Caligus rogercresseyi (Boxshall and Bravo 2000) to pyrethroids and azamethiphos measured using bioassay tests–a large scale spatial study. Prev Vet Med in press

  • Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126:1203–1217

    Article  CAS  PubMed  Google Scholar 

  • Mørk S, Pletscher-Frankild S, Palleja Caro A, Gorodkin J, Jensen LJ (2014) Protein-driven inference of miRNA–disease associations. Bioinformatics 30:392–397

    Article  PubMed  CAS  Google Scholar 

  • Murchison EP, Hannon GJ (2004) miRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr Opin Cell Biol 16:223–229

    Article  CAS  PubMed  Google Scholar 

  • Núñez-Acuña G, Boltaña S, Gallardo-Escárate C (2016) Pesticides drive stochastic changes in the chemoreception and neurotransmission system of marine ectoparasites. Int J Mol Sci 17:700

    Article  PubMed Central  CAS  Google Scholar 

  • Núñez-Acuña G, Gallardo-Escárate C (2019) Characterization of the salmon louse Lepeophtheirus salmonis miRNome: sex-biased differences related to the coding and non-coding RNA interplay. Mar Genomics 45:38–47

    Article  PubMed  Google Scholar 

  • Núñez-Acuña G, Sáez-Vera C, Valenzuela-Muñoz V, Valenzuela-Miranda D, Arriagada G, Gallardo-Escárate C (2020) Tackling the molecular drug sensitivity in the sea louse Caligus rogercresseyi based on mRNA and lncRNA interactions. Genes 11:857

    Article  PubMed Central  CAS  Google Scholar 

  • Pan J-J, Xie X-J, Li X, Chen W (2015) Long non-coding RNAs and drug resistance. Asian Pac J Cancer Prev 16:8067–8073

    Article  PubMed  Google Scholar 

  • Pang A, Au WY, Kwong YL (2004) Caveolin-1 gene is coordinately regulated with the multidrug resistance 1 gene in normal and leukemic bone marrow. Leukemia Res 28:973–977

    Article  CAS  Google Scholar 

  • Schröder A, Klein K, Winter S, Schwab M, Bonin M, Zell A, Zanger U (2013) Genomics of ADME gene expression: mapping expression quantitative trait loci relevant for absorption, distribution, metabolism and excretion of drugs in human liver. Pharmacogenomics J 13:12

    Article  PubMed  CAS  Google Scholar 

  • Search C (2006) Sea lice resistance to chemotherapeutants: a handbook in resistance management. SEARCH: Sacramento CA

  • Shah A, Meese E, Blin N (2010) Profiling of regulatory microRNA transcriptomes in various biological processes: a review. J Appl Genet 51:501–507

    Article  CAS  PubMed  Google Scholar 

  • Tew KD (2016) Glutathione-associated enzymes in anticancer drug resistance. Cancer Res 76:7–9

    Article  CAS  PubMed  Google Scholar 

  • Tüfekci KU, Meuwissen RLJ, Genç Ş (2014) The role of microRNAs in biological processes. miRNomics: MicroRNA Biol Comput Analysis Springer

  • Valenzuela-Miranda D, Etebari K, Asgari S, Gallardo-Escárate C (2017) Long noncoding RNAs: unexplored players in the drug response of the sea louse Caligus rogercresseyi. Agri Gene 4:1–7

    Article  Google Scholar 

  • Valenzuela-Miranda D, Nuñez-Acuña G, Valenzuela-Muñoz V, Asgari S, Gallardo-Escárate C (2015) MicroRNA biogenesis pathway from the salmon louse (Caligus rogercresseyi): emerging role in delousing drug response. Gene 555:231–241

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela-Muñoz V, Chavez-Mardones J, Gallardo-Escárate C (2015) RNA-seq analysis evidences multiple gene responses in Caligus rogercresseyi exposed to the anti-salmon lice drug azamethiphos. Aquaculture 446:156–166

    Article  CAS  Google Scholar 

  • Valenzuela-Muñoz V, Sturm A, Gallardo-Escárate C (2015b) Transcriptomic insights on the ABC transporter gene family in the salmon louse Caligus rogercresseyi. Parasites Vectors 8:1–14

    Article  CAS  Google Scholar 

  • Wang KC, Chang HY (2011) Molecular mechanisms of long non-coding RNAs. Mol Cell 43:904–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei T, Simko V, Levy M, Xie Y, Jin Y, Zemla J (2017) Package corrplot. Statistician 56:316–324

    Google Scholar 

  • Zhu B, Xu M, Shi H, Gao X, Liang P (2017) Genome-wide identification of lncRNAs associated with chlorantraniliprole resistance in diamondback moth, Plutella xylostella (L.). BMC Genomics 18:380

  • Zhuo Y, Gao G, Shi J, Zhou X, Wang X (2013) miRNAs: biogenesis, origin and evolution, functions on virus-host interaction. Cell Physiol Biochem 32:499–510

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by FONDECYT #1210852, FONDECYT #11200813, and FONDAP #15110027, granted by CONICYT-Chile.

Author information

Authors and Affiliations

Authors

Contributions

G.N., V.V., and C.G. designed the experiment. G.N., V.V., and D.V. conducted the transcriptome analyses. G.N. performed the statistical analyses. G.N. and C.G. led the manuscript writing. All the authors revised and agreed with the final version of the manuscript.

Corresponding author

Correspondence to Cristian Gallardo-Escárate.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 930 KB)

Supplementary file2 (XLSX 12 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Núñez-Acuña, G., Valenzuela-Muñoz, V., Valenzuela-Miranda, D. et al. Comprehensive Transcriptome Analyses in Sea Louse Reveal Novel Delousing Drug Responses Through MicroRNA regulation. Mar Biotechnol 23, 710–723 (2021). https://doi.org/10.1007/s10126-021-10058-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-021-10058-z

Keywords

Navigation