Skip to main content

Advertisement

Log in

Antibiofilm and Anti-Candidal Activities of the Extract of the Marine Sponge Agelas dispar

  • Original Article
  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

This study aimed to determine the antifungal and antibiofilm activities of Agelas dispar on biofilm-producing Candida species. The methanolic extract of A. dispar was obtained and the fraction Ag2 showed inhibitory activity for all 13 Candida strains tested, in concentrations ranging from 2.5 to 0.15625 mg/mL. Antifungal activity of fungicidal nature was seen between 5.0 and 0.3125 mg/mL of extract against the strains. All the strains were classified as biofilm producers. The methanolic extract Ag2 was tested at concentrations of 2.5 and 1.25 mg/mL for antibiofilm activity against the biofilm formation and maturation in all the strains of the genus Candida. Treated and untreated biofilm samples were selected for visualization using scanning electron microscopy (SEM). SEM allowed the visualization of the quantitative decrease in the microbial community, alterations of structural morphology, and destruction of both the formation and maturation of biofilms, at the cellular level. The mechanism of action of this fraction is suggested to be at the plasma membrane and/or cell wall alteration level. Therefore, the use of the methanolic extract of A. dispar may be a promising antifungal and antibiofilm therapeutic strategy against different species of the genus Candida.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alves CFS, Bonez PC, Souza ME, Cruz RC, Boligon AA, Piana M, et al. Antimicrobial, antirypanosomal and antibiofilm activity of Equisetum hyemale. Microb Pathog. 2016;101:119–25.

    Article  Google Scholar 

  2. Zeng B, Li J, Wang Y, Chen P, Wang X. In vitro and in vivo effects of suloctidil on growth and biofilm formation of the opportunistic fungus Candida albicans. Oncotarget. 2017;8(41):69972–82.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kiraz N, Oz Y. Species distribution and in vitro antifungal susceptibility of clinical Candida isolates from a university hospital in Turkey over a 5-year period. Med Mycol. 2011;49:126–31.

    Article  PubMed  Google Scholar 

  4. Khan MSA, Malik A, Ahmad I. Anti-candial activity of essencial oils alone and in combination with amphotericin B or fluconazole against multi-drug resistant isolates of Candida albicans. Med Mycol. 2012;50:33–42.

    Article  CAS  PubMed  Google Scholar 

  5. Silva S, Rodrigues CF, Araújo D, Rodrigues ME, Henriques M. Candida species biofilms antifungal resistance. J Fungi. 2017;3(1):8.

    Article  Google Scholar 

  6. Hu F, Tu X-F, Thakur K, Hu F, Li X-L, Zhang Y-S, et al. Comparison of antifungal activity of essential oils from different plants against three fungi. Food Chem Toxicol. 2019;134:110821.

    Article  CAS  PubMed  Google Scholar 

  7. Vital Júnior AC, Diniz- Neto H, Fernandes GL, Ferreira MDL, Pereira JA, Silva DF, Oliveira HMBF, Oliveira-Filho AA, Lima EO, Silva DF. In vitro investigation of ß-citronellol biological effect in association with amphotericin B against Candida tropicalis. Lat Am J Pharm. 2019;38(9):1784–7.

    Google Scholar 

  8. Silva D, Diniz-Neto H, Cordeiro L, Silva-Neta M, Silva S, Andrade-Júnior F, et al. (R)-(+)-β-Citronellol and (S)-(−)-β-citronellol in combination with amphotericin B against Candida spp. Int J Mol Sci. 2020;21(5):1785.

    Article  CAS  PubMed Central  Google Scholar 

  9. Malinovská Z. Antibiofilm activity of selected plant essential oils from the Lamiaceae family against Candida albicans clinical isolates. Ann Agric Environ Med. 2021;28(2):260–6.

    Article  PubMed  Google Scholar 

  10. Abd Rashed A, Rathi D-NG, Ahmad Nasir NAH, Abd Rahman AZ. Antifungal properties of essential oils and their compounds for application in skin fungal infections: conventional and nonconventional approaches. Molecules. 2021;26(4):1093.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR. Marine natural products. Nat Prod Rep. 2014;31:160–258.

    Article  CAS  PubMed  Google Scholar 

  12. Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov. 2015;14:111–29.

    Article  CAS  PubMed  Google Scholar 

  13. Bickmeyer U, Drechsler C, Köck M, Assmann M. Brominated pyrrole alkaloids from marine Agelas sponges reduce depolarization-induced cellular calcium elevation. Toxicon. 2004;44:45–51.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang H, Dong M, Chen J, Wang H, Tenney K, Crews P. Bioactive secondary metabolites from the marine sponge genus Agelas. Mar Drugs. 2017;15:11–29.

    Google Scholar 

  15. Lee Y-K, Lee J-H, Lee H-K. Microbial symbiosis in marine sponges. J Microbiol. 2001;39(4):254–64.

    Google Scholar 

  16. Breckle G, Polborn K, Lindel T. Synthesis of the pyrrole-imidazole alkaloid sventrin from the marine sponge Agelas sventres. Zeitschrift fur Naturforsch – Sect B J Chem Sci. 2003;58(5):451–6.

    Article  CAS  Google Scholar 

  17. Scala F, Fattorusso E, Menna M, Taglialatela-Scafati O, Tierney M, Kaiser M, Tasdemir D. Bromopyrrole alkaloids as lead compounds against protozoan parasites. Mar Drugs. 2010;8:2162–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Choi C, Son A, Lee HS, Lee YJ, Park HC. Radiosensitization by marine sponge Agelas sp. extracts in hepatocellular carcinoma cells with aautophagy induction. Sci Rep. 2018;8:1–10.

    Google Scholar 

  19. Chanas B, Pawlik JR, Lindel T, Fenical W. Chemical defense of the Caribbean sponge Agelas clathrodes (Schmidt). J Exp Mar Bio Ecol. 1997;208(1–2):185–96.

    Article  Google Scholar 

  20. Sauleau P, Moriou C, Al MA. Metabolomics approach to chemical diversity of the Mediterranean marine sponge Agelas oroides. Nat Prod Res. 2017;31(14):1625–32.

    Article  CAS  PubMed  Google Scholar 

  21. Abdjul DB, Yamazaki H, Kanno S, Takahashi O, Kirikoshi R, Ukai K, et al. Structures and biological evaluations of agelasines isolated from the Okinawan marine sponge Agelas nakamurai. J Nat Prod. 2015;78(6):1428–33.

    Article  CAS  PubMed  Google Scholar 

  22. Cychon C, Lichte E, Köck M. The marine sponge Agelas citrina as a source of the new pyrrole–imidazole alkaloids citrinamines A-D and N-methylagelongine. Beilstein J Org Chem. 2015;11(1):2029–37.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Singh KS, Majik MS. Pyrrole-derived alkaloids of marine sponges and their biological properties. In: Studies in natural products chemistry. Elsevier; 2019. p. 377–409.

  24. Nakamura H, Wu H, Kobayashi JI, Ohizumi Y, Hirata Y, Higashijima T, Miyazawa T. Agelasidine-A, a novel sesquiterpene possessing antispasmodic activity from the okinawa sea sponge Agelas sp. Tetrahedron Lett. 1983;24:4105–8.

    Article  CAS  Google Scholar 

  25. Roy C, Edwina S. Evaluation of new antimicrobials in vitro and in experimental animal infection. In: Victor L, editor. Antibiotics in laboratory medicine. Baltimore: Williams and Wilkins; 1991. p. 739–86.

    Google Scholar 

  26. Hadacek F, Greger H. Testing of antifungal natural products: methodologies, comparability of results and assay choice. Phytochem Anal. 2000;11:137–47.

    Article  CAS  Google Scholar 

  27. CLSI. Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. Approved Standard - Fourth Edition M27-A4. 2017; Wayne, Pennsylvania, USA

  28. Hood JR, Wilkinson JM, Cavanagh HMA. Evaluation of common antibacterial screening methods utilized in essential oil research. J Essent Oil Res. 2003;15:428–33.

    Article  CAS  Google Scholar 

  29. Isenberg H. Clinical microbiology procedures handbook. Washington DC: American Society for Microbiology; 1992. p. 1.5.1-1.5.18.

    Google Scholar 

  30. Ncube NS, Afolayan AJ, Okoh AI. Assessment techniques of antimicrobial properties of natural compounds of plant origin: current methods and future trends. Afr J Biotechnol. 2008;7:1797–806.

    Article  CAS  Google Scholar 

  31. Sakita KM, Conrado PCV, Faria DR, Arita GS, Capoci IR, Rodrigues-Vendramini FA, et al. Copolymeric micelles as efficient inert nanocarrier for hypericin in the photodynamic inactivation of Candida species. Future Microbiol. 2019;14:519–31.

    Article  CAS  PubMed  Google Scholar 

  32. Jin Y, Yip HK, Samaranayake YH, Yau JY, Samaranayake LP. Biofilm-forming ability of Candida albicans is unlikely to contribute to high levels of oral yeast carriage in cases of human immunodeficiency virus infection. J Clin Microbiol. 2003;41:2961–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Melo AS, Colombo AL, Arthington-Skaggs BA. Paradoxical growth effect of caspofungin observed on biofilms and planktonic cells of five different Candida species. Antimicrob Agents Chemother. 2007;51:3081–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Djordjevic D, Wiedmann M, Mclandsborough LA. Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl Environ Microbiol. 2002;68:2950–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stepanović S, Vuković D, Hola V, Di Bonaventura G, Djukić S, Cirković I, Ruzicka F. Quantification of biofilm in microtiter plates. APMIS. 2007;115:891–9.

    Article  PubMed  Google Scholar 

  36. Barbosa JP, de Oliveira TR, Boni GC. Eucalyptus spp: Candida albicans antibiofilm activity. Ec Dental Sci. 2019;4:824–40.

    Google Scholar 

  37. Jadhav S, Shah R, Bhave M, Palombo EA. Inhibitory activity of yarrow essential oil on Listeria planktonic cells and biofilms. Food Control. 2013;29:125–30.

    Article  CAS  Google Scholar 

  38. Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR. Marine natural products. Nat Prod Rep. 2017;34:235–94.

    Article  CAS  PubMed  Google Scholar 

  39. El-Hossary EM, Cheng C, Hamed MM, El-Sayed Hamed AN, Ohlsen K, Hentschel U, Abdelmohsen UR. Antifungal potential of marine natural products. Eur J Med Chem. 2017;126:631–51.

    Article  CAS  PubMed  Google Scholar 

  40. Tilvi S, Moriou C, Martin M-T, Gallard J-F, Sorres J, Patel K, et al. Agelastatin E, agelastatin F, and benzosceptrin C from the marine sponge Agelas dendromorpha. J Nat Prod. 2010;73(4):720–3.

    Article  CAS  PubMed  Google Scholar 

  41. Hamed ANE, Schmitz R, Bergermann A, Totzke F, Kubbutat M, Müller WEG, Youssef DTA, Bishr MM, Kamel MS, Edrada-Ebel R, Wätjen W, Proksch P. Bioactive pyrrole alkaloids isolated from the Red Sea: marine sponge Stylissa carteri. Z Naturforsch C J Biosci. 2018;73(5–6):199–210.

    Article  CAS  PubMed  Google Scholar 

  42. Nazemi M, Alidoust Salimi M, Alidoust Salimi P, Motallebi A, Tamadoni Jahromi S, Ahmadzadeh O. Antifungal and antibacterial activity of Haliclona sp. from the Persian Gulf. Iran J Mycol Med. 2014;24:220–4.

    Article  CAS  PubMed  Google Scholar 

  43. Galeano E, Martínez A. Antimicrobial activity of marine sponges from Urabá Gulf Colombian Caribbean region. J Mycol Med. 2007;17:21–4.

    Article  Google Scholar 

  44. Dogan E, Demir O, Sertdemir M, Saracli MA, Konuklugil B. Screening of the selected marine sponges from the coasts of Turkey for antimicrobial activity. Indian J Geo-Marine Sci. 2018;47:1193–8.

    Google Scholar 

  45. Glöckner A, Cornely OA. Candida glabrata - unique features and challenges in the clinical management of invasive infections. Mycoses. 2015;58:445–50.

    Article  PubMed  Google Scholar 

  46. Zidar N, Montalvão S, Hodnik Z, Nawrot DA, Zula A, Ilas J. Antimicrobial activity of the marine alkaloids, clathrodin and oroidin, and their synthetic analogues. Mar Drugs. 2014;12:940–63.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Stout EP, Yu LC, Molinski TF. Antifungal diterpene alkaloids from the Caribbean sponge Agelas citrina: unified configurational assignments of agelasidines and agelasines. Eur J Org Chem. 2012;27:5131–5.

    Article  Google Scholar 

  48. Hammami S, Bergaoui A, Boughalleb N, Romdhane A, Khoja I, Kamel MBH, Mighri Z. Antifungal effects of secondary metabolites isolated from marine organisms collected from the Tunisian coast. Comptes Rendus Chim. 2010;13:1397–400.

    Article  CAS  Google Scholar 

  49. Campana R, Favi G, Baffone W, Lucarini S. Marine alkaloid 2,2-bis(6-bromo-3-indolyl) ethylamine and its synthetic derivatives inhibit microbial biofilms formation and disaggregate developed biofilms. Microorganisms. 2019;7:1–2.

    Article  Google Scholar 

  50. Delaloye J, Calandra T. Invasive candidiasis as a cause of sepsis in the critically ill patient. Virulence. 2014;5:154–62.

    Article  Google Scholar 

  51. Tóth R, Nosek J, Mora-Montes HM, Gabaldon T, Bliss JM, Nosanchuk JD, Turner SA, Butler G, Vágvölgyi C, Gácser A. Candida parapsilosis: from Genes to the Bedside. Clin Microbiol Rev. 2019 Feb 27;32(2):e00111-e118.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Modrzewska B, Kurnatowski P. Adherence of Candida sp. to host tissues and cells as one of its pathogenicity features. Ann Parasitol. 2015;61:3–9.

    PubMed  Google Scholar 

  53. Chaves GM, Diniz MG, Silva-Rocha WP, Souza LB, Gondim LA, Ferreira MA. Species distribution and virulence factors of Candida spp. isolated from the oral cavity of kidney transplant recipients in Brazil. Mycopathologia. 2013;175:255–63.

    Article  CAS  PubMed  Google Scholar 

  54. Tumbarello M, Posteraro B, Trecarichi EM, Fiori B, Rossi M, Porta R, et al. Biofilm production by Candida species and inadequate antifungal therapy as predictors of mortality for patients with candidemia. J Clin Microbiol. 2007;45:1843–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pannanusorn S, Fernandez V, Römling U. Prevalence of biofilm formation in clinical isolates of Candida species causing bloodstream infection. Mycoses. 2013;56:264–72.

    Article  PubMed  Google Scholar 

  56. Cepas V, López Y, Gabasa Y, Martins CB, Ferreira JD, Correia MJ, et al. Inhibition of bacterial and fungal biofilm formation by 675 extracts from microalgae and cyanobacteria. Antibiotics. 2019;8:1–12.

    Article  Google Scholar 

  57. Zore GB, Thakre AD, Jadhav S, Karuppayil SM. Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle. Phytomedicine. 2011;18:1181–90.

    Article  CAS  PubMed  Google Scholar 

  58. Monteiro DR, Feresin LP, Arias LS, Barão VAR, Barbosa DB, Delbem ACB. Effect of tyrosol on adhesion of Candida albicans and Candida glabrata to acrylic surfaces. Med Mycol. 2015;53:656–65.

    Article  CAS  PubMed  Google Scholar 

  59. Cai A, Kleij AW. Regio and enantio selective preparation of chiral allylic sulfones featuring elusive quaternary stereocenters. Angew Chemie 2019;58:14944–9.

    Article  CAS  Google Scholar 

  60. Tampieri MP, Galuppi R, MacChioni F, Carelle MS, Falcioni L, Cionim PL, Morelli I. The inhibition of Candida albicans by selected essential oils and their major components. Mycopathologia. 2005;159:339–45.

    Article  CAS  PubMed  Google Scholar 

  61. Paduch R, Kandefer-Szerszeń M, Trytek M, Fiedurek J. Terpenes: substances useful in human healthcare. Arch Immunol Ther Exp (Warsz). 2007;55:315–27.

    Article  CAS  Google Scholar 

  62. Chandrasekhar S, Kumar TP, Haribabu K, Reddy CR. Hydroxyphthalimide allied triazole-pyrrolidine catalyst for asymmetric Michael additions in water. Tetrahedron Asymmetry. 2010;21:2372–5.

    Article  CAS  Google Scholar 

  63. Bakulev V, Dehaen W, Beryozkina T. Thermal rearrangements and transformations of 1,2,3-triazoles. In: Dehaen W, Bakulev V, editors. Chemistry of 1,2,3-triazoles. Springer, Cham: Topics in Heterocyclic Chemistry; 2014. p. 40.

    Google Scholar 

Download references

Acknowledgments

We are grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico or the National Council for Scientific and Technological Development (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for their structural and financial support to this work.

Author information

Authors and Affiliations

Authors

Contributions

MCNDP and RMA executed, analyzed, and interpreted the data for the sponge Agelas dispar extraction and fractionation, liquid chromatography, and mass spectrometry. ACVJ and VSA executed and analyzed the data for the antifungal and antibiofilm activities in the formation and maturation of biofilm among 13 strains of Candida species, designed the work, prepared the article, and translated it into English. JPB and JFH executed and analyzed the data for treated and untreated biofilm samples for visualization using scanning electron microscopy (SEM). DB and MARS identified the Candida species and participated in the preparation of the article.

Corresponding author

Correspondence to Maria Aparecida de Resende Stoianoff.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Handling Editor: Mariana Henriques.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Júnior, A.C.V., de Castro Nogueira Diniz Pontes, M., Barbosa, J.P. et al. Antibiofilm and Anti-Candidal Activities of the Extract of the Marine Sponge Agelas dispar. Mycopathologia 186, 819–832 (2021). https://doi.org/10.1007/s11046-021-00591-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-021-00591-9

Keywords

Navigation