Skip to main content
Log in

Sulfite Oxidation Catalyzed by Manganese(II) Ions: Reaction Kinetics in Excess of Metal Ions

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The paper gives a summary of data on the kinetics of oxygen oxidation of sulfite in the presence of manganese(II) salts at ambient temperature in a medium with pH 2–4. The results of data analysis have revealed contradictions and errors in determining the partial orders of this reaction when metal ions are present in excess to sulfite. It is shown that the kinetics of oxidation of sulfite under such conditions actually is of zero order with respect to manganese ions and one and a half order with respect to sulfite, and the reaction rate slightly depends on pH. The averaged observed reaction rate constant is 12 ± 4 L1/2 mol–1/2 s–1. The found new partial orders agree with a common free radical mechanism of this reaction. Using the partial orders redefined in this study for components, it is possible to bring into agreement various data obtained by numerous authors on the kinetics of this environmentally important reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Radojevic, M., Environ. Tech. Lett., 1984, vol. 5, no. 12, p. 549.

    Article  CAS  Google Scholar 

  2. Ulrich, R.K, Rochelle, G.T., and Prada, R.E., Chem. Eng. Sci., 1986, vol. 41, no. 8, p. 2183

    Article  CAS  Google Scholar 

  3. Lancia, A., Musmarra, D., Pepe, F., and Prisciandaro, M., Chem. Eng. J., 1997, vol. 66, no. 2, p. 123.

    Article  CAS  Google Scholar 

  4. Srivastava, R.K. and Jozewicz, W., J. Air Waste Manage. Assoc., 2001, vol. 51, no. 12, p. 1676.

  5. Seinfeld, J.H. and Pandis, J.H., Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, New York: Wiley, 1998, p. 1326.

    Google Scholar 

  6. Brandt, Ch. and van Eldik, R., Chem. Rev., 1995, vol. 95, no. 1, p. 119.

    Article  CAS  Google Scholar 

  7. Warneck, P., Mirabel, P., Salmon, G.A., Eldik, R. van, Vinckier, C., Wannowius, K.J., and Zetsch, C., Review of the activities and achievements of the EUROTRAC subproject HALIPP, Warneck, P., Ed., Heterogeneous and Liquid Phase Processes, Berlin: Springer, 1996, p. 7.

  8. Kuo, D.T.F., Kirk, D.W., and Jia, C.Q., J. Sulfur Chem., 2006, vol. 27, no. 5, p. 461.

    Article  CAS  Google Scholar 

  9. Martin, L.R. and Hill, M.W., J. Phys. E: Sci. Instrum., 1987, vol. 20, no. 11, p. 1383.

    Article  CAS  Google Scholar 

  10. Martin, L.R. and Hill, M.W., Atmos. Environ., 1987, vol. 21, no. 10, p. 2267.

    Article  CAS  Google Scholar 

  11. Berglund, J., Fronaeus, S., and Elding, L.I., Inorg. Chem., 1993, vol. 32, no. 21, p. 4527.

    Article  CAS  Google Scholar 

  12. Coughanowr, D.R. and Krause, F.E., Ind. Eng. Chem. Fundam., 1965, vol. 4, no. 1, p. 61.

    Article  CAS  Google Scholar 

  13. Pasiuk-Bronikowska, W. and Bronikowski, T., Chem. Eng. Sci., 1981, vol. 36, no. 1. P. 215.

    Article  CAS  Google Scholar 

  14. Fronaeous, S., Berglund, J., and Elding, L.I., J. Inorg. Chem., 1998, vol. 37, no. 19, p. 4939.

    Article  Google Scholar 

  15. Kasibhatla, P., Chameides, W.L., and John, J.St., J. Geophys. Res., 1997, vol. 102(D3), p. 3737.

    Article  CAS  Google Scholar 

  16. Jameton, R.A., Muller, J.G., and Burrows, C.J., C. R. Chim., 2002, vol. 5, no. 5, p. 461.

    Article  CAS  Google Scholar 

  17. Herbarth, O., Fritz, G., Krumbiegel, P., Diez, U., Franck, U., and Richter, M., Environ. Toxicol., 2001, vol. 16, no. 3, p. 269.

    Article  CAS  Google Scholar 

  18. Hoather, R.C. and Goodeve, C.F., Trans. Faraday Soc., 1934, vol. 30, p. 1149.

    Article  CAS  Google Scholar 

  19. Johnstone, H.F. and Coughanowr, D.R., Ind. Eng. Chem., 1958, vol. 50, no. 8, p. 1169.

    Article  CAS  Google Scholar 

  20. Huss, A., Jr., Lim, P.K., and Eckert, C.A., J. Phys. Chem., 1982, vol. 86, no. 21, p. 4224.

    Article  CAS  Google Scholar 

  21. Li-dong, W., Juan, W., Peiyao, X., Qiangwei, L., Wendi, Zh., and Shua, C., Appl. Catal., A, 2015, vol. 508, no. 1, p. 52.

  22. Zhou, D.N., Chen, L., Li, J.J., and Wu, F., Chem. Eng. J., 2018, vol. 346, p. 726.

    Article  CAS  Google Scholar 

  23. Hudson, J.L., Erwin, J., and Catiopovich, N.M., Research Report. Kinetics of Sulfur Dioxide Oxidation in Aqueous Solutions, The University of Illinois Urbana. US Environmental Protection Agency EPA-600/7-79-030, 1979, p. 82.

  24. Yermakov, A.N., Purmal, A.P., Prog. React. Mech., 2003, vol. 28, p. 189.

    Article  CAS  Google Scholar 

  25. Ermakov, A.N. and Purmal, A.P., Kinet. Catal., 2002, vol. 43, no. 2, p. 249.

    Article  CAS  Google Scholar 

  26. Berglund, J. and Elding, L.I., In Laboratory Studies of the Aqueous Chemistry of Free Radicals, Transition Metals and Formation of Acidity in Clouds; Warneck P., Contract Coordinator, Final Report Contract no. STEP – 0005 – C(MB), 1992, Rep. B, p. 27.

  27. Kaplan, D.J., Himmelblau, D.M., and Kanaoka, C., Atmos. Environ., 1981, vol. 15, no. 5, p. 763.

    Article  CAS  Google Scholar 

  28. Johnstone, H.F. and Moll, A.J., Ind. Eng. Chem., 1960, vol. 52, no. 10, p. 861.

    Article  CAS  Google Scholar 

  29. Matteson, M.J., Stober, W., and Luther, H., Ind. Eng. Chem. Fundam., 1969, vol. 8, no. 4, p. 677.

    Article  CAS  Google Scholar 

  30. Barrie, L.A. and Georgii, H.W., Atmos. Environ., 1976, vol. 10, no. 9, p. 743.

    Article  CAS  Google Scholar 

  31. Pasiuk-Bronikowska, W. and Ziajka, J., Chem. Eng. Sci., 1985. 40, no. 8, p. 1567.

    Article  CAS  Google Scholar 

  32. Berglund, J. and Elding, L.I., J. Chem. Soc., Faraday Trans., 1994, vol. 90, no. 21, p. 3309.

    Article  CAS  Google Scholar 

  33. Larson, T.J., Horike, N.R., and Harrison, H., Atmos. Environ., 1978, vol. 12, no. 8, p. 1597.

  34. Grgić, I. and Berčič, G., J. Atmos. Chem., 2001, vol. 39, no. 2, p. 155.

    Article  Google Scholar 

  35. Betterton, E.A., Hoffmann, M.R., J. Phys. Chem., 1988, vol. 92, no. 21, p. 5962.

    Article  CAS  Google Scholar 

  36. Yermakov, A.N., Poskrebyshev, G.A., and Purmal, A.P., Prog. React. Kinet., 1997, vol. 22, no. 2, p. 141.

    CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 19-05-50007 (Mikromir)), as well as with financing provided under State Assignments for Tal’roze Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences (topic АААА-А20-120011390097-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Yermakov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yermakov, A.N. Sulfite Oxidation Catalyzed by Manganese(II) Ions: Reaction Kinetics in Excess of Metal Ions. Kinet Catal 62, 565–572 (2021). https://doi.org/10.1134/S0023158421050013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158421050013

Keywords:

Navigation