Skip to main content
Log in

Room-Temperature Interaction of Nitrogen Dioxide with Rhodium Nanoparticles Supported on the Surface of Highly Oriented Pyrolytic Graphite (HOPG)

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Samples of rhodium nanoparticles supported on the surface of highly oriented pyrolytic graphite (HOPG) are prepared by vacuum deposition; their interaction with nitrogen dioxide is studied by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). In the initial state, metallic rhodium particles with a size of about 2–5 nm are combined into aggregates localized on the steps and terraces, apparently, in the region of localization of structural defects. After treatment in NO2 at room temperature and pressures of 10−6 and 10−5 mbar, carbon oxidation accompanied by the degradation of the structure of 12–15 graphene layers on the HOPG surface is observed. Under these conditions, rhodium remains in the metallic state, and the Rh particles are encapsulated with carbon. The results are compared with data on the interaction of NO2 with Pt and Pd nanoparticles supported on the HOPG surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Kainulainen, T.A., Niemela, M.K., and Krause, A.O.I., J. Mol. Catal. A: Chem., 1999, vol. 140, p. 173.

    Article  CAS  Google Scholar 

  2. Ukisu, Y. and Miyadera, T., React. Kinet. Catal. Lett., 2004, vol. 81, p. 305.

    Article  CAS  Google Scholar 

  3. Stakheev, A.Yu., Tkachenko, O.R., Klement’ev, K.V., Grunert, W., Bragina, G.O., Mashkovskii, I.S., and Kustov, L.M., Kinet. Catal., 2005, vol. 46, p. 114.

    Article  CAS  Google Scholar 

  4. Deliy, I.V. and Simakova, I.L., Russ. Chem. Bull., 2008, vol. 57, p. 2056.

    Article  CAS  Google Scholar 

  5. Deliy, I.V., Simakova, I.L., Ravasio, N., and Psaro, R., Appl. Catal., A, 2009, vol. 357, p. 170.

  6. Chatterjee, M., Ishizaka, T., Suzuki, A., and Kawanami, H., Chem. Commun., 2013, vol. 49, p. 4567.

    Article  CAS  Google Scholar 

  7. Hattori, T., Ida, T., Tsubone, A., Sawama, Y., Monguchi, Y., and Sajiki, H., Eur. J. Org. Chem., 2015, p. 2492.

  8. Kordouli, E., Kordulis, Ch., Lycourghiotis, A., Cole, R., Vasudevan, P.T., Pawelec, B., and Fierro, J.L.G., Mol. Catal., 2017, vol. 441, p. 209.

    Article  CAS  Google Scholar 

  9. Monguchi, Y., Mizuno, M., Ichikawa, T., Fujita, Y., Murakami, E., Hattori, T., Maegawa, T., Sawama, Y., and Sajiki, H., J. Org. Chem., 2017, vol. 82, p. 10939.

    Article  CAS  PubMed  Google Scholar 

  10. Katayama, Y., Aoyagi, M., Matsumoto, T., Harada, H., Simion, A.M., Egashira, N., Mitoma, Y., and Simion, C., Environ. Sci. Pollut. Res., 2017, vol. 24, p. 591.

    Article  CAS  Google Scholar 

  11. Song, S., Wang, Y., and Yan, N., Mol. Catal., 2018, vol. 454, p. 87.

    Article  CAS  Google Scholar 

  12. Althikrallah, H., Kunstmann-Olsen, C., Kozhevnikova, E.F., and Kozhevnikov, I.V., Catalysts, 2020, vol. 10, p. 1171.

    Article  CAS  Google Scholar 

  13. Martin-Martinez, M., Rodriguez, J.J., Baker, R.T., and Gymez-Sainero, L.M., Chem. Eng. J., 2020, vol. 397, p. 125479.

    Article  CAS  Google Scholar 

  14. Prasad, K.V. and Chaudhari, R.V., J. Catal., 1994, vol. 145, p. 204.

    Article  CAS  Google Scholar 

  15. Matsumoto, K., Dougomori, K., Tachikawa, S., Ishii, T., and Shindo, M., Org. Lett., 2014, vol. 16, p. 4754.

    Article  CAS  PubMed  Google Scholar 

  16. Matsumoto, K., Yoshida, M., and Shindo, M., Angew. Chem., Int. Ed. 2016, vol. 55, p. 5272.

    Article  CAS  Google Scholar 

  17. Sawama, Y., Asai, S., Monguchi, Y., and Sajiki, H., Chem. Rec., 2016, vol. 16, p. 261.

    Article  CAS  PubMed  Google Scholar 

  18. Wilde, C.A., Ryabenkova, Y., Firth, I.M., Pratt, L., Railton, J., Bravo-Sanchez, M., Sano, N., Cumpson, P.J., Coates, P.D., Liu, X., and Conte, M., Appl. Catal., A, 2019, vol. 570, p. 271.

  19. Matsumoto, K., Kobayashi, Y., Hirokane, T., and Yoshida, M., Chem. Pharm. Bull., 2020, vol. 68, p. 167.

    Article  CAS  Google Scholar 

  20. Bukhtiyarov, V.I. and Slin’ko, M.G., Russ. Chem. Rev., 2001, vol. 70, p. 147.

    Article  CAS  Google Scholar 

  21. Ananikov, V.P., Khemchyan, L.L., Ivanova, Yu.V., Bukhtiyarov, V.I., Sorokin, A.M., Prosvirin, I.P., Vatsadze, S.Z., Medved’ko, A.V., Nuriev, V.N., Dil’man, A.D., Levin, V.V., Koptyug, I.V., Kovtunov, K.V., Zhivonitko, V.V., Likholobov, V.A., et al., Russ. Chem. Rev., 2014, vol. 83, p. 885.

    Article  CAS  Google Scholar 

  22. Smirnov, M.Yu., Kalinkin, A.V., Vovk, E.I., Simonov, P.A., Gerasimov, E.Yu., Sorokin, A.M., and Bukhtiyarov, V.I., Appl. Surf. Sci., 2018, vol. 428, p. 972.

    Article  CAS  Google Scholar 

  23. Smirnov, M.Yu., Kalinkin, A.V., Sorokin, A.M., and Bukhtiyarov, V.I., Kinet. Catal., 2020, vol. 61, p. 637.

    Article  CAS  Google Scholar 

  24. Smirnov, M.Yu., Kalinkin, A.V., Sorokin, A.M., and Bukhtiyarov, V.I., Kinet. Catal., 2020, vol. 61, p. 907.

    Article  CAS  Google Scholar 

  25. Kalinkin, A.V., Sorokin, A.M., Smirnov, M.Yu., and Bukhtiyarov, V.I., Kinet. Catal., 2014, vol. 55, p. 354.

    Article  CAS  Google Scholar 

  26. Smirnov, M.Yu., Vovk, E.I., Nartova, A.V., Kalinkin, A.V., and Bukhtiyarov, V.I., Kinet. Catal., 2018, vol. 59, p. 653.

    Article  CAS  Google Scholar 

  27. Kalinkin, A.V., Smirnov, M.Yu., Bukhtiyarov, A.V., and Bukhtiyarov, V.I., Kinet. Catal., 2015, vol. 56, p. 796.

    Article  CAS  Google Scholar 

  28. Kalinkin, A.V., Smirnov, M.Yu., Klembovskii, I.O., Sorokin, A.M., Gladkii, A.Yu., and Bukhtiyarov, V.I., J. Struct. Chem., 2018, vol. 59, p. 1726.

    Article  CAS  Google Scholar 

  29. Moulder, J.F., Stickle, W.F., Sobol, P.E., and Bomben, K.D., Handbook of X-ray Photoelectron Spectroscopy, Eden Prairie: Perkin-Elmer, 1992.

  30. Schnyder, B., Alliata, D., Kotz, R., and Siegenthaler, H., Appl. Surf. Sci., 2001.V. 173, p. 221.

    Article  CAS  Google Scholar 

  31. Yang, D.-Q. and Sacher, E., Surf. Sci., 2002, vol. 504, p. 125.

    Article  CAS  Google Scholar 

  32. Rousseau, B., Estrade-Szwarckopf, H., Thomann, A.-L., and Brault, P., Appl. Phys. A, 2003, vol. 77, p. 591.

    Article  CAS  Google Scholar 

  33. Blume, R., Rosenthal, D., Tessonnier, J.-P., Li, H., Knop-Gericke, A., and Schlogl, R., ChemCatChem, 2015, vol. 7, p. 2871.

    Article  CAS  Google Scholar 

  34. Susi, T., Pichler, T., and Ayala, P., Beilstein J. Nanotechnol., 2015, vol. 6, p.177.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Paredes, J.I., Martınez-Alonso, A., and Tascon, J.M.D., Langmuir, 2007, vol. 23, p. 8932.

    Article  CAS  PubMed  Google Scholar 

  36. Favaro, M., Agnoli, S., Perini, L., Durante, C., Gennaro, A., and Granozzi, G., Phys. Chem. Chem. Phys., 2013, vol. 15, p. 2923.

    Article  CAS  PubMed  Google Scholar 

  37. Utsumi, S., Honda, H., Hattori, Y., Kanoh, H., Takahashi, K., Sakai, H., Abe, M., Yudasaka, M., Iijima, S., and Kaneko, K., J. Phys. Chem. C, 2007, vol. 111, p. 5572.

    Article  CAS  Google Scholar 

  38. Demoisson, F., Raes, M., Terryn, H., Guillot, J., Migeon, H.-N., and Reniers, F, Surf. Interface Anal., 2008, vol. 40, p. 566.

    Article  CAS  Google Scholar 

  39. Sandhu, J., Chauhan, A.K.S., and Govind, J. Nanopart. Res., 2011, vol. 13, p. 3503.

    Article  CAS  Google Scholar 

  40. Figueiredo, J.L. and Pereira, M.F.R., Catal. Today, 2010, vol. 150, p. 2.

    Article  CAS  Google Scholar 

  41. Wang, Z.-M., Kanoh, H., Kaneko, K., Lu, G.Q., and Do, D., Carbon, 2002, vol. 40, p. 1231.

    Article  CAS  Google Scholar 

  42. Fu, C., Zhao, G., Zhang, H., and Li, S., Int. J. Electrochem. Sci., 2013, vol. 8, p. 6269.

    CAS  Google Scholar 

  43. Saravanan, M., Girisun, T.C.S., and Rao, S.V., J. Mater. Chem. C, 2017, vol. 5, p. 9929.

    Article  CAS  Google Scholar 

  44. Martınez, M.T., Callejas, M.A., Benito, A.M., Cochet, M., Seeger, T., Anson, A., Schreiber, J., Gordon, C., Marhic, C., Chauvet, O., Fierro, J.L.G., and Maser, W.K., Carbon, 2003, vol. 41, p. 2247.

    Article  CAS  Google Scholar 

  45. Yang, D., Velamakanni, A., Bozoklu, G., Park, S., Stoller, M., Piner, R.D., Stankovich, S., Jung, I., Field, D.A., Ventrice, C.A., and Ruoff, R.S., Carbon, 2009, vol. 47, p. 145.

    Article  CAS  Google Scholar 

  46. Hou, S., Su, S., Kasner, M.L., Shah, P., Patel, K., and Madarang, C.J., Chem. Phys. Lett., 2010, vol. 501, p. 68.

    Article  CAS  Google Scholar 

  47. Ganguly, A., Sharma, S., Papakonstantinou, P., and Hamilton, J., J. Phys. Chem. C, 2011, vol. 115, p. 17009.

    Article  CAS  Google Scholar 

  48. Stobinski, L., Lesiak, B., Malolepszy, A., Mazurkiewicz, M., Mierzwa, B., Zemek, J., Jiricek, P., and Bieloshapka, I., J. Electron Spectrosc. Related Phenom., 2014, vol. 195, p. 145.

    Article  CAS  Google Scholar 

  49. Jena, G., Vanithakumari, S.C., Thinaharan, C., George, R.P., and Mudali, U.K., J. Bio-Tribo-Corrosion, 2018, vol. 4, p. 20.

  50. http://xpspeak.software.informer.com/4.1/.

  51. Haerle, R., Riedo, E., Pasquarello, A., and Baldereschi, A., Phys. Rev. B, 2001, vol. 65, p. 045101.

    Article  CAS  Google Scholar 

  52. Shinotsuka, H., Tanuma, S., Powell, C.J., and Penn, D.R., Surf. Interface Anal., 2015, vol. 47, p. 871.

    Article  CAS  Google Scholar 

  53. Dementjev, A.P., Ivanov, K.E., and Tsyvkunova, E.A., Appl. Surf. Sci., 2015, vol. 357, p. 1434.

    Article  CAS  Google Scholar 

  54. Smirnov, M.Yu., Kalinkin, A.V., and Bukhtiyarov, V.I., Kinet. Catal., 2019, vol. 60, p. 823.

    Article  CAS  Google Scholar 

  55. Baird, R.J., Ku, R.C., and Wynblatt, P., Surf. Sci., 1980, vol. 97, p. 346.

    Article  CAS  Google Scholar 

  56. Baraldi, A., Dhanak, V.R., Kiskinova, M., and Rosei, R., Appl. Surf. Sci., 1994, vol. 78, p. 445.

    Article  CAS  Google Scholar 

  57. Lizzit, S., Baraldi, A., Cocco, D., Comelli, G., Paolucci, G., Rosei, R., and Kiskinova, M., Surf. Sci., 1998, vol. 410, p. 228.

    Article  CAS  Google Scholar 

  58. Saito, T., Esaka, F., Furuya, K., Kikuchi, T., Imamura, M., Matsubayashi, N., and Shimada, H., J. Electron Spectrosc. Related Phenom., 1998, vols. 88–91, p. 763.

    Article  Google Scholar 

  59. Bondino, F., Comelli, G., Baraldi, A., Vesselli, E., Rosei, R., Goldoni, A., and Lizzit, S., J. Chem. Phys., 2003, vol. 119, p. 12534.

    Article  CAS  Google Scholar 

  60. Requejo, F.G., Hebenstreit, E.L.D., Ogletree, D.F., and Salmeron, M., J. Catal., 2004, vol. 226, p. 83.

    Article  CAS  Google Scholar 

  61. Nakamura, I., Kobayashi, Y., Hamada, H., and Fujitani, T., Surf. Sci., 2006, vol. 600, p. 3235.

    Article  CAS  Google Scholar 

  62. Stanczyk, K., Dziembaj, R., Piwowarsca, Z., and Witkowski, S., Carbon, 1995, vol. 33, p. 1383.

    Article  CAS  Google Scholar 

  63. Pels, J.R., Kapteijn, F., Moulijn, J.A., Zhu, Q., and Thomas, K.M., Carbon, 1995, vol. 33, p. 1641.

    Article  CAS  Google Scholar 

  64. Biniak, S., Szymanski, G., Siedlewski, J., and Swiatkowski, A., Carbon, 1997, vol. 35, p. 1799.

    Article  CAS  Google Scholar 

  65. Ghosh, B., Sarma, S., Pontsho, M., and Ray, S.C., Diamond Relat. Mater., 2018, vol. 89, p. 35.

    Article  CAS  Google Scholar 

  66. Kostecki, R., Schnyder, B., Alliata, D., Song, X., Kinoshita, K., and Kotz, R., Thin Solid Films, 2001, vol. 396, p. 36.

    Article  CAS  Google Scholar 

  67. Root, T.W., Schmidt, L.D., and Fisher, G.B., Surf. Sci., 1983, vol. 134, p. 30.

    Article  CAS  Google Scholar 

  68. Jansen, M.M.M., Caniaz, O., Nieuwenhuys, B.E., and Niemantsverdriet, J.W.H., Langmuir, 2010, vol. 26, p. 16239.

    Article  CAS  PubMed  Google Scholar 

  69. Sjovall, P., So, S.K., Kasemo, B., Franchy, R., and Ho, W., Chem. Phys. Lett., 1990, vol. 172, p. 125.

    Article  Google Scholar 

  70. Campbell, C.T. and White, J.M., Appl. Surf. Sci., 1978, vol. 1, p. 347.

    Article  CAS  Google Scholar 

  71. Schmatloch, V. and Kruse, N., Surf. Sci., 1992, vol. 269/270, p. 488.

    Article  Google Scholar 

  72. Jirsak, T., Dvorak, J., and Rodriguez, J.A., Surf. Sci., 1999, vol. 436, p. L683.

    Article  CAS  Google Scholar 

  73. Wickham, D.T., Banse, B.A., and Koel, B.E., Surf. Sci., 1991, vol. 243, p. 83.

    Article  CAS  Google Scholar 

  74. Zheng, G. and Altman, E.I., Surf. Sci., 2000, vol. 462, p. 151.

    Article  CAS  Google Scholar 

  75. Heras, J.M., Estiu, G., and Viscido, L., Thin Solid Films, 1990, vol. 188, p. 165.

    Article  CAS  Google Scholar 

  76. Stara, I., Nehasil, V., and Matolin, V., Surf. Sci., 1995, vol. 331–333, p. 173.

    Article  Google Scholar 

  77. Leisenberger, F.P., Koller, G., Sock, M., Surnev, S., Ramsey, M.G., Netzer, F.P., Klotzer, B., and Hayek, K., Surf. Sci., 2000, vol. 445, p. 380.

    Article  CAS  Google Scholar 

  78. Han, J., Zemlyanov, D.Y., and Ribeiro, F.H., Surf. Sci., 2006, vol. 600, p. 2752.

    Article  CAS  Google Scholar 

  79. Nagarajan, S., Thirunavukkarasu, K., and Gopinath, C.S., J. Phys. Chem. C, 2009, vol. 113, p. 7385.

    Article  CAS  Google Scholar 

  80. Suprun, E.A. and Salanov, A.N., Kinet. Catal., 2017, vol. 58, p. 92.

    Article  CAS  Google Scholar 

  81. German, E.D., Sheintuch, M., and Kuznetsov, A.M., J. Phys. Chem. C, 2009, vol. 113, p. 15326.

    Article  CAS  Google Scholar 

  82. Farber, R.G., Turano, M.E., Oskorep, E.C.N., Wands, N.T., Juurlink, L.B.F., and Killelea, D.R., J. Phys.: Condens. Matter, 2017, vol. 29, p. 164002.

    Google Scholar 

  83. Wider, J., Greber, T., Wetli, E., Kreutz, T.J., Schwaller, P., and Osterwalder, J., Surf. Sci., 1998, vol. 417, p. 301.

    Article  CAS  Google Scholar 

  84. Monine, M.I., Schaak, A., Rubinstein, B.Y., Imbihl, R., and Pismen, L.M., Catal. Today, 2001, vol. 70, p. 321.

    Article  CAS  Google Scholar 

  85. Gibson, K.D., Killelea, D.R., and Sibener, S.J., J. Phys. Chem. C, 2014, vol. 118, p. 14977.

    Article  CAS  Google Scholar 

  86. Morales, C., Díaz-Fernández, D., Mossanek, R.J.O., Abbate, M., Méndez, J., Pérez-Dieste, V., Escudero, C., Rubio-Zuazo, J., Prieto, P., and Soriano, L., Appl. Surf. Sci., 2020, vol. 509, p. 145118.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The studies are conducted using the equipment of the Center of Collective Use “National Center of Catalyst Research” (SPECS XPS instrument and a Hitachi Regulus 8230 SEM instrument).

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the governmental order for Boreskov lnstitute of Catalysis (project AAAA-A21-121011390011-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Smirnov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Timoshinina

Abbreviations and notation: HOPG, highly oriented pyrolytic graphite; XPS, X-ray photoelectron spectroscopy; SEM, scanning electron microscopy; STM, scanning tunneling microscopy; Eb, binding energy; Ekin, kinetic energy; λ, electron mean free path.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, M.Y., Kalinkin, A.V., Salanov, A.N. et al. Room-Temperature Interaction of Nitrogen Dioxide with Rhodium Nanoparticles Supported on the Surface of Highly Oriented Pyrolytic Graphite (HOPG). Kinet Catal 62, 664–674 (2021). https://doi.org/10.1134/S0023158421050116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158421050116

Keywords:

Navigation