Skip to main content
Log in

Electrically controlled nicotine delivery through Carbon nanotube membranes via electrochemical oxidation and nanofluidically enhanced electroosmotic flow

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

A promising tool for nicotine addiction treatment is a programmable nicotine delivery device coupled to smart phone-assisted behavioral therapies. Key metrics for such a device are delivery of adjustable nicotine doses tailored to individual needs, compact size and power efficiency. Reported here is a detailed optimization of carbon nanotube (CNT) membrane fabrication based on electrochemical oxidation, to improve its electrically driven performance for nicotine fluxes and switching ON (-1.5 V)-OFF (0 V) flux ratio. ON- state nicotine flux of ~ 6 µmoles/cm2/h at -1.5 V applied bias was achieved allowing ~ 6-folds decrease in the size of device (4 cm2) to attain flux equivalent to high dose nicotine gum (1.1 µmoles/cm2/h). Application of + 1.5 V bias in OFF state reduced diffusional background flux, giving an ON (-1.5 V)/OFF (+ 1.5 V) flux ratio of 68 that enabled device to deliver between the highest nicotine gum (1.1 µmoles/cm2/h) and lowest nicotine patch (0.08 µmoles/cm2/h) doses, as well as taper off nicotine doses for long term addiction treatment. The nicotine transport mechanism was studied as a function of pH and applied bias, using neutral tracer molecule, showing a mechanism of both electroosmosis and electrophoresis in the atomically smooth nanofluidic pores of CNTs. Optimal power consumption/flux efficiency of 111(µW/cm2)/µmoles/cm2/h was achieved allowing watch-battery lifetimes of 7–62 days for conventional treatment dosing regimens. Bluetooth-enabled, remotely controlled CNT membrane system has potential for treatments of nicotine, opioid and alcohol addictions that needs dose adjustment with precise temporal control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • B. Bock, A. Graham, C. Sciamanna, J. Krishnamoorthy, J. Whiteley, R. Carmona-Barros, R. Niaura, D. Abrams, Nicotine Tob. Res. 6, 207–219 (2004)

    Article  Google Scholar 

  • N.L. Benowitz, N. Engl, J. Med. 362, 2295–2303 (2010)

    Google Scholar 

  • R.M. Brand, R.H. Guy, J Control. Release. 33, 285–292 (1995)

  • K. Blum, M. Oscar-Berman, D. Barh, J. Giordano, M.J. Gold, J. Genet. Syndr. Gene Ther. 4, 1–12 (2013)

    Article  Google Scholar 

  • M. Civljak, L.F. Stead, J. Hartmann-Boyce, A. Sheikh, J. Car, Cochrane Database Syst. Rev. CD007078 (2013)

  • C. Feyerabend, R.M. Ings, M.A. Russel, Br. J. Clin. Pharmacol. 19, 239–247 (1985)

    Article  Google Scholar 

  • A.L. Graham, K.M. Carpenter, S. Cha, S. Cole, M.A. Jacobs, M. Raskob, H. Cole-Lewis, Subst. Abuse Rehabil. 7, 55–69 (2016)

    Article  Google Scholar 

  • G.K. Gulati, B.J. Hinds, Crit. Rev. Ther. Drug Carrier Syst. 35, 495–520 (2018)

    Article  Google Scholar 

  • G.K. Gulati, L.R. Berger, B.J. Hinds, J. Control. Release. 293, 135–143 (2019)

    Article  Google Scholar 

  • G.K. Gulati, T. Chen, B.J. Hinds, Nanomedicine 13, 1–9 (2017)

    Article  Google Scholar 

  • R.H. Guy, Y.N. Kalia, M.B. Delgado-Charro, V. Merino, A. López, D. Marro, J. Control. Release. 64, 129–132 (2000)

    Article  Google Scholar 

  • F. Hammann, O. Kummer, S. Guercioni, G. Imanidis, J. Drewe, J. Control. Release 232, 248–254 (2016)

    Article  Google Scholar 

  • M.S. Kang, C.R. Martin., Langmuir. 17, 2753–2759 (2001)

  • D.R. Kalaria, P. Patel, V. Merino, V.B. Patravale, Y.N. Kalia, Eur. J. Pharm. Biopharm. 88, 56–63 (2014)

    Article  Google Scholar 

  • K. Malinovskaja, T. Laaksonen, J. Hirvonen, Eur J Pharm Biopharm. 88, 594–601 (2014)

    Article  Google Scholar 

  • M. Majumder, N. Chopra, R. Andrews, B.J. Hinds, Nature 438, 44 (2005a)

    Article  Google Scholar 

  • M. Majumder, N. Chopra, B.J. Hinds, J. Am. Chem. Soc. 127, 9062–9070 (2005b)

    Article  Google Scholar 

  • M. Majumder, X. Zhan, R. Andrews, B.J. Hinds, Langmuir 23, 8624–8631 (2007)

    Article  Google Scholar 

  • S.A. Miller, V.Y. Young, C.R. Martin, J. Am. Chem. Soc. 123, 12335–12342 (2001)

    Article  Google Scholar 

  • J.J. Prochaska, N.L. Benowitz, Annu. Rev. Med. 67, 467–486 (2016)

    Article  Google Scholar 

  • N. A. Rigotti, J.A.M.A. 308, 1573–1580 (2012)

  • M.A. Russell, C. Feyerabend, P.V. Cole, Br. Med. J. 1, 1043–1046 (1976)

    Article  Google Scholar 

  • L.F. Stead, T. Lancaster, Cochrane Database Syst. Rev. 12, CD009670 (2012)

  • S. Shiffman, R.V. Fant, A.R. Buchhalter, J.G. Gitchell, J.E. Henningfield, Expert. Opin. Drug Deliv. 2, 563–577 (2005)

  • V. Srinivasan, W.I. Higuchi, Int. J. Pharm. 60, 133–138 (1990)

    Article  Google Scholar 

  • I. Trandafir, V. Nour, M.E. Ionica, Arch. Latinoam. Nutr. 63, 87–94 (2013)

    Google Scholar 

  • J. Wu, K.S. Paudel, C. Strasinger, D. Hammell, A.L. Stinchcomb, B.J. Hinds, Proc. Natl. Acad Sci. U. S. A. 107, 11698–11702 (2010)

  • J. Wu, K. Gerstandt, M. Majumder, X. Zhan, B.J. Hinds, Nanoscale 3, 3321–3328 (2011)

    Article  Google Scholar 

  • X. Xu, A.H. Floyd, J.L. Westmaas, A. Aron, Addict. Behav. 5, 295–301 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support was provided by NIH NIDA (R01DA018822) and Campbell Professorship (UW MSE). Authors would like to thank Lily Berger for assistance in CNT sample preparations and assay development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce Jackson Hinds.

Ethics declarations

Conflict of interest

Authors have no financial/commercial conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulati, G.K., Hinds, B.J. Electrically controlled nicotine delivery through Carbon nanotube membranes via electrochemical oxidation and nanofluidically enhanced electroosmotic flow. Biomed Microdevices 23, 48 (2021). https://doi.org/10.1007/s10544-021-00580-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10544-021-00580-1

Keywords

Navigation