Skip to main content
Log in

Usefulness of rapid MR angiography using two-point Dixon for evaluating carotid and aortic plaques

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

Recently, various magnetic resonance imaging (MRI) modalities have been developed to easily detect carotid and aortic plaques, but these techniques are time-consuming and vulnerable to motion artifacts. We investigated the utility of a gradient echo MRI technique known as liver acquisition with volume acceleration flexible (LAVA-Flex) to detect carotid and aortic atherosclerotic plaques.

Methods

Ten patients who underwent carotid endarterectomy (CEA) were assessed regarding the correspondence between LAVA-Flex findings and the histopathology of excised carotid plaques. In addition, 47 patients with cryptogenic ischemic stroke underwent LAVA-Flex and transesophageal echocardiography (TEE) for detection of embolic sources in the thoracic aorta. We analyzed the relationship between the thickness of the aortic plaque measured by TEE and the presence of high-intensity lesions on LAVA-Flex.

Results

Nine of 10 patients (90.0%) who underwent CEA showed a high-intensity carotid lesion on LAVA-Flex, which corresponded pathologically to plaques containing large lipid cores and hemorrhage. Twenty-four (51.1%) of 47 cryptogenic stroke patients showed a high-intensity lesion in the thoracic aorta on LAVA-Flex; of these, 21 (87.5%) also demonstrated a large plaque (thickness ≥4 mm) on TEE. Twenty-two (95.7%) of 23 patients without a high-intensity lesion on LAVA-Flex demonstrated no large plaque on TEE. LAVA-Flex had a sensitivity of 95.5% and a specificity of 88.0% in patients with large plaques.

Conclusion

This study showed that LAVA-Flex successfully detected carotid and aortic plaques. This imaging technique may be useful to rapidly diagnose and evaluate carotid and aortic plaques, which are critical risk factors for aortogenic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Amarenco P, Duyckaerts C, Tzourio C, Henin D, Bousser MG, Hauw JJ (1992) The prevalence of ulcerated plaques in the aortic arch in patients with stroke. N Engl J Med 326(4):221–225. https://doi.org/10.1056/NEJM199201233260402

    Article  CAS  PubMed  Google Scholar 

  2. Di Tullio MR, Russo C, Jin Z, Sacco RL, Mohr JP, Homma S, Patent foramen ovale in cryptogenic stroke study I (2009) aortic arch plaques and risk of recurrent stroke and death. Circulation 119 (17):2376-2382. https://doi.org/10.1161/CIRCULATIONAHA.108.811935

  3. Tunick PA, Rosenzweig BP, Katz ES, Freedberg RS, Perez JL, Kronzon I (1994) High risk for vascular events in patients with protruding aortic atheromas: A prospective study. J Am College Cardiol 23(5):1085–1090. https://doi.org/10.1016/0735-1097(94)90595-9

    Article  CAS  Google Scholar 

  4. Sugioka K, Matsumura Y, Hozumi T, Fujita S, Ito A, Kataoka T, Takagi M, Mizutani K, Naruko T, Hosono M, Hirai H, Sasaki Y, Ueda M, Suehiro S, Yoshiyama M (2011) Relation of aortic arch complex plaques to risk of cerebral infarction in patients with aortic stenosis. Am J Cardiol 108(7):1002–1007. https://doi.org/10.1016/j.amjcard.2011.05.036

    Article  PubMed  Google Scholar 

  5. Toyoda K, Yasaka M, Nagata S, Yamaguchi T (1992) Aortogenic embolic stroke: a transesophageal echocardiographic approach. Stroke 23(8):1056–1061. https://doi.org/10.1161/01.str.23.8.1056

    Article  CAS  PubMed  Google Scholar 

  6. Handa N, Matsumoto M, Maeda H, Hougaku H, Kamada T (1995) Ischemic stroke events and carotid atherosclerosis. Results of the Osaka Follow-up Study for Ultrasonographic Assessment of Carotid Atherosclerosis (the OSACA Study). Stroke 26(10):1781–1786. https://doi.org/10.1161/01.str.26.10.1781

    Article  CAS  PubMed  Google Scholar 

  7. Fayad ZA, Nahar T, Fallon JT, Goldman M, Aguinaldo JG, Badimon JJ, Shinnar M, Chesebro JH, Fuster V (2000) In vivo magnetic resonance evaluation of atherosclerotic plaques in the human thoracic aorta: a comparison with transesophageal echocardiography. Circulation 101(21):2503–2509. https://doi.org/10.1161/01.cir.101.21.2503

    Article  CAS  PubMed  Google Scholar 

  8. Eikendal AL, Blomberg BA, Haaring C, Saam T, van der Geest RJ, Visser F, Bots ML, den Ruijter HM, Hoefer IE, Leiner T (2016) 3D black blood VISTA vessel wall cardiovascular magnetic resonance of the thoracic aorta wall in young, healthy adults: reproducibility and implications for efficacy trial sample sizes: a cross-sectional study. J Cardiovasc Magn Reson 18:20. https://doi.org/10.1186/s12968-016-0237-2

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhou C, Qiao H, He L, Yuan C, Chen H, Zhang Q, Li R, Wang W, Du F, Li C, Zhao X (2016) Characterization of atherosclerotic disease in thoracic aorta: A 3D, multicontrast vessel wall imaging study. Eur J Radiol 85(11):2030–2035. https://doi.org/10.1016/j.ejrad.2016.09.006

    Article  PubMed  Google Scholar 

  10. Hinton DP, Cury RC, Chan RC, Wald LL, Sherwood JB, Furie KL, Pitts JT, Schmitt F (2006) Bright and black blood imaging of the carotid bifurcation at 3.0T. Eur J Radiol 57(3):403–411. https://doi.org/10.1016/j.ejrad.2005.12.028

    Article  PubMed  Google Scholar 

  11. Oyama N, Gona P, Salton CJ, Chuang ML, Jhaveri RR, Blease SJ, Manning AR, Lahiri M, Botnar RM, Levy D, Larson MG, O'Donnell CJ, Manning WJ (2008) Differential impact of age, sex, and hypertension on aortic atherosclerosis: the Framingham Heart Study. Arterioscler Thromb Vasc Biol 28(1):155–159. https://doi.org/10.1161/ATVBAHA.107.153544

    Article  CAS  PubMed  Google Scholar 

  12. Li XH, Zhu J, Zhang XM, Ji YF, Chen TW, Huang XH, Yang L, Zeng NL (2014) Abdominal MRI at 3.0 T: LAVA-Flex compared with conventional fat suppression T1-weighted images. J Magn Reson Imaging 40(1):58–66. https://doi.org/10.1002/jmri.24329

    Article  PubMed  Google Scholar 

  13. Saito S, Tanaka K, Hashido T (2016) Liver acquisition with volume acceleration flex on 70-cm wide-bore and 60-cm conventional-bore 3.0-T MRI. Radiol Phys Technol 9(2):154–160. https://doi.org/10.1007/s12194-015-0344-z

    Article  PubMed  Google Scholar 

  14. Ma J (2004) Breath-hold water and fat imaging using a dual-echo two-point Dixon technique with an efficient and robust phase-correction algorithm. Magn Reson Med 52(2):415–419. https://doi.org/10.1002/mrm.20146

    Article  PubMed  Google Scholar 

  15. Beddy P, Rangarajan RD, Kataoka M, Moyle P, Graves MJ, Sala E (2011) T1-weighted fat-suppressed imaging of the pelvis with a dual-echo Dixon technique: initial clinical experience. Radiology 258(2):583–589. https://doi.org/10.1148/radiol.10100912

    Article  PubMed  Google Scholar 

  16. Irie R, Amemiya S, Ueyama T, Suzuki Y, Kamiya K, Takao H, Mori H, Abe O (2020) Accelerated acquisition of carotid MR angiography using 3D gradient-echo imaging with two-point Dixon. Neuroradiology 62(10):1345–1349. https://doi.org/10.1007/s00234-020-02452-6

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yuan C, Mitsumori LM, Ferguson MS, Polissar NL, Echelard D, Ortiz G, Small R, Davies JW, Kerwin WS, Hatsukami TS (2001) In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. Circulation 104(17):2051–2056. https://doi.org/10.1161/hc4201.097839

    Article  CAS  PubMed  Google Scholar 

  18. Shimada Y, Ueno Y, Tanaka Y, Okuzumi A, Miyamoto N, Yamashiro K, Tanaka R, Hattori N, Urabe T (2013) Aging, aortic arch calcification, and multiple brain infarcts are associated with aortogenic brain embolism. Cerebrovasc Dis 35(3):282–290. https://doi.org/10.1159/000347073

    Article  PubMed  Google Scholar 

  19. Watanabe Y, Nagayama M (2010) MR plaque imaging of the carotid artery. Neuroradiology 52(4):253–274. https://doi.org/10.1007/s00234-010-0663-z

    Article  PubMed  Google Scholar 

  20. Orrapin S, Rerkasem K (2017) Carotid endarterectomy for symptomatic carotid stenosis. Cochrane Database Syst Rev 6:CD001081. https://doi.org/10.1002/14651858.CD001081.pub3

    Article  PubMed  Google Scholar 

  21. Saito A, Sasaki M, Ogasawara K, Kobayashi M, Hitomi J, Narumi S, Ohba H, Yamaguchi M, Kudo K, Terayama Y (2012) Carotid plaque signal differences among four kinds of T1-weighted magnetic resonance imaging techniques: a histopathological correlation study. Neuroradiology 54(11):1187–1194. https://doi.org/10.1007/s00234-012-1025-9

    Article  PubMed  Google Scholar 

  22. Narumi S, Sasaki M, Ohba H, Ogasawara K, Hitomi J, Mori K, Ohura K, Ono A, Terayama Y (2010) Altered carotid plaque signal among different repetition times on T1-weighted magnetic resonance plaque imaging with self-navigated radial-scan technique. Neuroradiology 52(4):285–290. https://doi.org/10.1007/s00234-009-0642-4

    Article  PubMed  Google Scholar 

  23. Sato Y, Ogasawara K, Narumi S, Sasaki M, Saito A, Tsushima E, Namba T, Kobayashi M, Yoshida K, Terayama Y, Ogawa A (2016) Optimal MR Plaque Imaging for Cervical Carotid Artery Stenosis in Predicting the Development of Microembolic Signals during Exposure of Carotid Arteries in Endarterectomy: Comparison of 4 T1-Weighted Imaging Techniques. AJNR Am J Neuroradiol 37(6):1146–1154. https://doi.org/10.3174/ajnr.A4674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yamaguchi Y, Tanaka T, Morita Y, Yoshimura S, Koga M, Ihara M, Toyoda K (2019) Associations of High Intensities on Magnetization-Prepared Rapid Acquisition with Gradient Echo with Aortic Complicated Lesions in Ischemic Stroke Patients. Cerebrovasc Dis 47(1-2):15–23. https://doi.org/10.1159/000497068

    Article  PubMed  Google Scholar 

  25. Harloff A, Brendecke SM, Simon J, Assefa D, Wallis W, Helbing T, Weber J, Frydrychowicz A, Vach W, Weiller C, Markl M (2012) 3D MRI provides improved visualization and detection of aortic arch plaques compared to transesophageal echocardiography. J Magn Reson Imaging 36(3):604–611. https://doi.org/10.1002/jmri.23679

    Article  PubMed  Google Scholar 

Download references

Availability of data and material

Not applicable

Code availability

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

K.Morihara, T.N., and F.T. contributed to conception and study design. K. Morihara, T.N., K. Mori, I.F., M.N., K.S., K.H., and M.T. contributed to acquisition and analysis of data. H.T., H.D., Y.K., and F.T. advised the interpretation of data. K. Morihara and F.T. contributed to drafting manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fumiaki Tanaka.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

For this type of study formal consent is not required

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morihara, K., Nakano, T., Mori, K. et al. Usefulness of rapid MR angiography using two-point Dixon for evaluating carotid and aortic plaques. Neuroradiology 64, 693–702 (2022). https://doi.org/10.1007/s00234-021-02812-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-021-02812-w

Keywords

Navigation