Skip to main content
Log in

New Associations of Aerobic Bacteria that Actively Decompose Lindane

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Associations of aerobic bacteria capable of decomposing the organochlorine pesticide lindane at a concentration of 0.1 g/L in a mineral medium for 30–180 days were obtained via selection. It was found that the lindane-degrading associations L2-6, L3-6, L4-6, L6-6, and L4-10 were characterized by a low level of species diversity (Shannon index of 1.88–2.46). The associations include representatives of the classes of γ‑Proteobacteria (the genus Pseudomonas) and α-Proteobacteria (the genera Novosphingobium, Sphingoauranticus, Sphingomonas, Tardibacter). It was shown that the total DNA isolated from the bacterial associations of the sixth passage (L2-6, L3-6, L4-6, and L6-6) contained genes with a 98–100% level of similarity with the linABCX genes, which encode the “upper” pathways for aerobic lindane transformation. The bacterial association L4-10 effectively decomposed lindane in a mineral medium (100% destruction of 0.1 and 0.3 g/kg of lindane for 30 and 90 days, respectively) and in model soil systems (78.1–90% destruction of 0.5 g/kg of lindane for 45 days). Molecular-genetic and analytical methods indicated that the L4-10 association decomposed not only lindane but also the byproduct chlorine-organic compounds that form during its metabolism (1,3,4-trichlorobenzene, 2,5-dichlorophenol). Thus, the bacterial associations obtained in this study are of interest for the development of bioremediation technologies for areas contaminated with lindane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Vijgen, J., Abhilash, P.C., Li, Y.F., Lal, R., Forter, M., Torres, J., Singh, N., Yunus, M., Tian, C., Schaffer, A., and Webwr, R., Environ. Sci. Pollut. Res., 2011, vol. 18, pp. 152–162. https://doi.org/10.1007/s11356-010-0417-9

    Article  CAS  Google Scholar 

  2. Vijgen, J., de Borst, B., Weber, R., Stobiecki, T., and Forter, M., Environ. Pollut., 2019, vol. 248, pp. 696–705. https://doi.org/10.1016/j.envpol.2019.02.029

    Article  CAS  PubMed  Google Scholar 

  3. Egorova, D.O., Shestakova, E.A., Pervova, M.G., and Plotnikova, E.G., Vestn. Perm. Univ., 2014, no. 4, pp. 64–72.

  4. Nazarov, A.V., Egorova, D.O., Makarenko, A.A., Demakov, V.A., and Plotnikova, E.G., Ekol. Chel., 2016, no. 3, pp. 3–8.

  5. Revich, B., Aksel, E., Ushakova, T., Ivanova, I., Zhuchenko, N., Klyuev, N., Brodsky, B., and Sotskov, Y., Chemosphere, 2001, vol. 43, nos. 4–7, pp. 951–966.

    Article  CAS  Google Scholar 

  6. Alvarez, A., Benimeki, C.S., Saez, J.M., Fuentes, M.S., Cuozzo, S.A., Polti, M.A., and Amoroso, M.J., Int. J. Mol. Sci., 2012, vol. 13, no. 11, pp. 15086–15106.

    Article  CAS  Google Scholar 

  7. Camacho-Pérez, B., Ríos-Leal, E., Rinderknecht-Seijas, N., and Poggi-Varaldo, M., J. Environ. Manage., 2012, vol. 95, pp. S306–S318.

    Article  Google Scholar 

  8. Kumar, D. and Pannu, R., Bioresour. Bioprocess, 2018, vol. 5, p. 29. https://doi.org/10.1186/s40643-018-0213-9

    Article  CAS  Google Scholar 

  9. Lal, R., Pandey, G., Sharma, P., Kumari, K., Malhotra, S., Pandey, R., Raina, V., Kohler, H.P., Holliger, C., Jackson, C., and Oakeshott, J.G., Microbiol. Mol. Biol. Rev., 2010, vol. 74, no. 1, pp. 58–80.

    Article  CAS  Google Scholar 

  10. Nagata, Y., Endo, R., Ito, M., Ohtsubo, Y., and Tsuda, M., Appl. Microbiol. Biotechnol., 2007, vol. 76, pp. 741–752. https://doi.org/10.1007/s00253-007-1066-x

    Article  CAS  PubMed  Google Scholar 

  11. Raimondo, E.E., Aparicio, J.D., Briceno, G.E., Fuentes, M.S., and Benimeli, C.S., J. Soil Sci. Plant Nutrit., 2019, vol. 19, pp. 29–41. https://doi.org/10.1007/s42729-018-0003-7

    Article  CAS  Google Scholar 

  12. Sahoo, B. and Chaudhuri, S., Environ. Sustain., 2019, vol. 2, pp. 97–106.

    Article  CAS  Google Scholar 

  13. Chuang, S., Wang, B., Chen, K., Jia, W., Qiao, W., Ling, W., Tang, X., and Jiang, J., Sci. Total Environ., 2020, vol. 746, p. 140992. https://doi.org/10.1016/j.scitotenv.2020.140992

    Article  CAS  PubMed  Google Scholar 

  14. Pearce, S.L., Oakeshott, J.G., and Pandey, G., G3. Genes. Genomes. Genetics, 2015, vol. 5, no. 6, pp. 1081–1094.

    Google Scholar 

  15. Bajaj, S., Sagar, S., Khare, S., and Singh, D.K., Int. Biodeterior. Biodegrad., 2017, vol. 122, pp. 23–28. https://doi.org/10.1016/j.ibiod.2017.04.014

    Article  CAS  Google Scholar 

  16. Benimeli, C.S., Castro, G.R., and Chaile, A.P., Int. Biodeterior. Biodegrad., 2007, vol. 59, no. 2, pp. 148–155. https://doi.org/10.1016/j.ibiod.2006.07.014

    Article  CAS  Google Scholar 

  17. Kumar, D., Kumar, A., and Sharma, J., Bioresour. Bioprocess, 2016, vol. 3, p. 53. https://doi.org/10.1186/s40643-016-0130-8

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pannu, R. and Kumar, D., Biocat. Agricult. Biotech., 2017, vol. 11, pp. 97–107. https://doi.org/10.1016/j.bcab.2017.06.009

    Article  Google Scholar 

  19. Pesce, S.F. and Wunderling, D.A., Int. Biodeterior. Biodegrad., 2004, vol. 54, no. 4, pp. 255–260.

    Article  CAS  Google Scholar 

  20. Raimondo, E.E., Saez, J.M., Aparicio, J.D., Fuentes, M.S., and Benimeli, C.S., Chemosphera, 2020, vol. 238, p. 124512. https://doi.org/10.1016/j.chemosphere.2019.124512

    Article  CAS  Google Scholar 

  21. Saez, J.M., Aparicio, J.D., Amoroso, M.J., and Benimeli, C.S., Proc. Biochem., 2015, vol. 50, no. 11, pp. 1923–1933.

    Article  CAS  Google Scholar 

  22. Saez, J.M., Benimeli, C.S., and Amoroso, M.J., Chemosphera, 2012, vol. 89, no. 8, pp. 982–987.

    Article  CAS  Google Scholar 

  23. Saez, J.M., Bigliardo, A.L., Raimondo, E.E., Briceno, G.E., Polti, M.A., and Benimeli, C.S., Ecotoxicol. Environ. Saf., 2018, vol. 156, pp. 97–105. https://doi.org/10.1016/j.ecoenv.2018.03.011

    Article  CAS  PubMed  Google Scholar 

  24. Saez, J.M., Garcia, V.C., and Benimeli, C.S., Ecotoxic. Environ. Saf., 2017, vol. 144, pp. 351–359. https://doi.org/10.1016/j.ecoenv.2017.06.026

    Article  CAS  Google Scholar 

  25. Salam, J.A. and Das, N.J., J. Microbiol. Biotechnol., 2014, vol. 30, pp. 1301–1313. https://doi.org/10.1007/s11274-013-1551-6

    Article  CAS  Google Scholar 

  26. Zheng, G., Selvam, A., and Wong, J.W.C., Int. Biodeterior. Biodegrad., 2011, vol. 65, no. 4, pp. 612–618.

    Article  CAS  Google Scholar 

  27. Regar, R.K., Gaur, V.K., Bajaj, A., Tambat, S., and Manickam, N., Sci. Total Environ., 2019, vol. 681, pp. 413–423. https://doi.org/10.1016/j.scitotenv.2019.05.090

    Article  CAS  PubMed  Google Scholar 

  28. Metody pochvennoi mikrobiologii i biokhimii: Ucheb. posobie (Methods of Soil Microbiology and Biochemistry: Textbook), Zvyagintsev, D.G., Ed., Moscow: Mosk. Gos. Univ., 1991.

    Google Scholar 

  29. Raymond, R.L., Dev. Industr. Microb., 1961, vol. 2, pp. 23–32.

    CAS  Google Scholar 

  30. Zaitsev, G.M., Tsoi, T.V., Grishenkov, V.G., Plotnikova, E.G., and Boroni, A.M., FEMS Microbiol. Letts., 1991, vol. 81, no. 2, pp. 171–176.

    Article  CAS  Google Scholar 

  31. Bertani, G., J. Bacteriol., 1951, vol. 62, no. 3, pp. 293–300.

    Article  CAS  Google Scholar 

  32. Short Protocols in Molecular Biology, Ausbel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K., Eds., New York: Wiley, 1995, 3rd ed.

  33. Tiirola, M.A., Mannisto, M.K., Puhakka, J.A., and Kulomaa, M.S., Appl. Environ. Microbiol., 2002, vol. 68, no. 9, pp. 173–180.

    Article  CAS  Google Scholar 

  34. Fierer, N., Jackson, J.A., Vilgalys, R., and Jackson, R.B., Appl. Environ. Microbiol., 2005, vol. 71, no. 7, pp. 4117–4120. 32. Short Protocols in Molecular Biology, 3rd ed., Ausbel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K., New York: Wiley, 1995.

  35. Jurelevicius, D., Alvarez, V.M., Peixoto, R., Rosado, A.S., and Seldin, L., Appl. Soil. Ecol., 2012, vol. 55, p. 1. https://doi.org/10.1016/j.apsoil.2011.12.008

    Article  Google Scholar 

  36. Thomas, J-C., Berger, F., Jacquier, M., Bernillon, D., Baud-grasset, F., Truffaut, N., Norm, P., Vogel, T.M., and Simonet, P., J. Bacteriol., 1996, vol. 178, no. 20, pp. 6049–6055.

    Article  CAS  Google Scholar 

  37. Cérémonie, H., Boubakri, H., Mavingui, P., Simonet, P., and Vogel, T.M., FEMS Microbiol. Lett., 2006, vol. 257, no. 2, pp. 243–252.

    Article  Google Scholar 

  38. Manickam, N., Mau, M., and Schlömann, M., Appl. Microbiol. Biotechnol., 2006, vol. 69, no. 2, pp. 580–588.

    Article  CAS  Google Scholar 

  39. Raimondo, E.E., Saez, J.M., Aparicio, J.D., Fuentes, M.S., and Benimeli, C.S., J. Environ. Menegm, 2020, vol. 276, p. 111309. https://doi.org/10.1016/j.jenvman.2020.111309

    Article  CAS  Google Scholar 

  40. Chang, S.-C., Wu, M.-H., and Chen, T.-W., J. Soils Sedim., 2021, vol. 21, no. 1, pp. 469–486. https://doi.org/10.1007/s11368-020-02789-8

    Article  CAS  Google Scholar 

  41. Zhao, Y., Zhang, Y., Wang, J., Hou, Q., Liu, W., Wu, Y., and Christie, P., J. Soils Sedim., 2020, vol. 20, no. 1, pp. 2155–2165. https://doi.org/10.1007/s11368-020-02593-4

    Article  CAS  Google Scholar 

  42. Schwarz, A., Adetutu, E.M., Juhasz, A.L., Aburto-Medina, A., Ball, A.S., and Shahsavari, E., Microb. Ecol., 2018, vol. 75, no. 4, pp. 888–902. https://doi.org/10.1007/s00248-017-1094-8

    Article  CAS  PubMed  Google Scholar 

  43. Lee, H., Kim, D., and Park, S., J. Microbiol., 2018, vol. 56, no. 5, pp. P. 324–330. https://doi.org/10.1007/s12275-018-7455-2

  44. Anand, S., Sangwan, N., Lata, P., Kaur, J., Dua, A., Singh, A.K., Verma, M., Kaur, J., Khurana, J.P., Khurana, P., Mathur, S., and Lal, R., J. Bacteriol., 2012, vol. 194, no. 16, pp. 4471–4472.

    Article  CAS  Google Scholar 

  45. Kumari, R., Subudhi, S., Suar, M., Dhingra, G., Raina, V., Dogra, C., Lal, S., van der Meer, J.R., Holliger, C., and Lal, R., Appl. Environ. Microbiol., 2002, vol. 68, no. 12, pp. P. 6021–6028.

  46. Tabata, M., Ohhata, S., Kawasumi, T., Nikawadori, Y., Kishida, K., Sato, T., Ohtsubo, Y., Tsuda, M., and Nagata, Y., Genome Announc., 2016, vol. 4, no. 2, pp. E00247-16.

    PubMed  PubMed Central  Google Scholar 

  47. Tabata, M., Ohhata, S., Nikawadori, Y., Sato, T., Kishida, K., Ohtsubo, Y., Tsuda, M., and Nagata, Y., Genome Announc., 2016, vol. 4, no. 2, pp. E00246–16.

    PubMed  PubMed Central  Google Scholar 

  48. Tabata, M., Ohtsubo, Y., Ohhata, S., Tsuda, M., and Nagata, Y., Genome Announc, 2016, vol. 1, no. 3, pp. E00247–13. https://doi.org/10.1128/genomeA.00247-13

    Article  Google Scholar 

  49. Lal, R., Dogra, C., Malhotra, S., Sharma, P., and Pal, R., Trends Biotechnol., 2006, vol. 24, no. 3, pp. 121–130.

    Article  CAS  Google Scholar 

  50. Kumari, M., Ghosh, P., and Swati, ThakurI.S., Biores. Technol. Rep., 2020, vol. 10, p. 100415. https://doi.org/10.1016/j.biteb.2020.100415

    Article  Google Scholar 

  51. Dong, W.H., Zhang, P., Lin, X.Y., Zhang, Y., and Taboure, A., Sci. Total Environ., 2015, vol. 505, pp. 216–222. https://doi.org/10.1016/j.scitotenv.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  52. Qin, H., Shi, T., Wu, X., Li, Q.X., and Hua, R., J. Hazard. Mater., 2020, vol. 388, p. 121787. https://doi.org/10.1016/j.jhazmat.2019.12178753

    Article  PubMed  Google Scholar 

  53. Wang, F., Grundmann, S., Schmid, M., Dorfler, U., Roherer, S., Munch, J.C., Hartmann, A., Jiang, X., and Schroll, R., Chemosphere, 2007, vol. 67, no. 5, pp. 896–902.

    Article  CAS  Google Scholar 

  54. Abhilash, P.C., Srivastava, S., and Singh, N., Chemosphere, 2011, vol. 82, no. 1, pp. P. 56–63.

  55. Benimeli, C.S., Fuentesa, M.S., Abate, C.M., and Amoroso, M.J., Int. Biodeterior. Biodegrad., 2008, vol. 61, no. 3, pp. 233–239.

    Article  CAS  Google Scholar 

  56. Zhang, X., Nesme, J., Simonet, P., and Frostegård Å., Res. Microbiol., 2012, vol. 163, no. 3, pp. 200–210.

    Article  CAS  Google Scholar 

  57. Tu, Ch., Ma, L., Guo, P., Song, F., Teng, Y., and Zhang, H., Chemosphere, 2017, vol. 189, pp. 517–524.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was performed with the equipment of the Molecular Genetic Laboratory, the Chair of Botany and Plant Genetics, Perm State National Research University, as well as the Studies of Materials and Substance Center for Collective Use of the Perm Federal Research Center, the Ural Branch of the Russian Academy of Sciences.

Funding

The work was performed in the framework of Research & Development project AAAA-A19-119112290009-1 “Molecular Mechanisms of Adaptation of Microorganisms to Environmental Factors.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. O. Egorova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Makeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarova, E.A., Egorova, D.O., Anan’ina, L.N. et al. New Associations of Aerobic Bacteria that Actively Decompose Lindane. Appl Biochem Microbiol 57, 643–655 (2021). https://doi.org/10.1134/S0003683821050112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683821050112

Keywords:

Navigation