Skip to main content
Log in

Efficiency of Immobilized Enzymes on Bacterial Magnetosomes

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Despite the advancements of enzyme immobilization, improved immobilization techniques and new sources of supporting material is still a necessity. In this work, we have immobilised different enzymes such as α-amylase, α-glucosidase, lipase and catalase onto bacterial magnetosomes extracted from magnetotactic bacteria (MTB). Among the four enzymes, catalase and lipase showed significant increase in enzyme activity whereas the other two showed reduced activity when compared to the free enzyme. The free catalase activity was found to be 300.9 U/mg whereas the immobilised catalase activity was found to be 534.0 U/mg. The enzyme activity after immobilisation increased by 33.5% when compared to free enzyme. The spectrophotometric studies on the lipase activity with p-nitrophenyl acetate as substrate showed 2–5% increase in the activity for the immobilised lipase over free enzyme. However, the activity of magnetosome immobilised α-glucosidase and α-amylase decreased by 6 and 20%, respectively, compared to free enzyme. The decline in activity might be due to the insufficient coupling of enzymes with magnetosomes and leaching of unbound enzymes while washing. The results indicate that the process of coupling the magnetosomes with the enzymes needs to be improved for attaining enhanced activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Franssen, M.C., Steunenberg, P., Scott, E.L., Zuilhof, H., and Sanders, J.P., Chem. Soc. Rev., 2013, vol. 42, no. 15, pp. 6491–6533.

    Article  CAS  Google Scholar 

  2. Kim, J., Grate, J.W., and Wang, P., Chem. Eng. Sci., 2006, vol. 61, no. 3, pp. 1017–1026.

    Article  CAS  Google Scholar 

  3. Singh, P., Patel, V., Shah, V., and Madamwar, D., Appl. Biochem. Microbiol., 2019, vol. 55, no. 6, pp. 603–614.

    Article  CAS  Google Scholar 

  4. Kovalenko, G.A., Perminova, L.V., Terent’eva, T.G., and Plaksin, G.V., Appl. Biochem. Microbiol., 2007, vol. 43, no. 4, pp. 374–378.

    Article  CAS  Google Scholar 

  5. Mohamad, N.R., Marzuki, N.H.C., Buang, N.A., Huyop, F., and Wahab, R.A., Biotechnol. Biotechnol. Equip., 2015, vol. 29, no. 2, pp. 205–220.

    Article  CAS  Google Scholar 

  6. Nisha, S., Karthick, S.A., and Gobi, N., Chem. Sci. Rev. Lett., 2012, vol. 1, no. 3, pp. 148–155.

    Google Scholar 

  7. Khoshnevisan, K., Vakhshiteh, F., Barkhi, M., Baharifar, H., Poor-Akbar, E., Zari, N.,et al., Molecular Catalysis, 2017, vol. 442, pp. 66–73.

    Article  CAS  Google Scholar 

  8. Enzyme Stabilization and Immobilization, Humana Press, Totowa, NJ, 2011, pp. 183–191.

  9. Nosrati, H., Salehiabar, M., Attari, E., Davaran, S., Danafar, H., and Manjili, H.K., Appl. Organomet. Chem., 2018, vol. 32, no. 2, e4069.

    Article  Google Scholar 

  10. Blakemore, R.P., Maratea, D., and Wolfe, R.S., J. Bact., 1979, vol. 140, no. 2, pp. 720–729.

    Article  CAS  Google Scholar 

  11. Schleifer, K.H., Schüler, D., Spring, S., Weizenegger, M., Amann, R., Ludwig, W. and Köhler, M., Syst. Appl. Microbiol., 1991, vol. 14, no. 4, pp. 379–385.

    Article  Google Scholar 

  12. Frankel, R.B., Bazylinski, D.A., and Schüler, D., Supramol. Sci., 1998, vol. 5, no. 3–4, pp. 383–390.

    Article  CAS  Google Scholar 

  13. Zhang, Y., Ni, Q., Xu, C., Wan, B., Geng, Y., Zheng, G., et al., ACS Appl. Mater. Interfaces, 2018, vol. 11, no. 4, pp. 3654–3665.

    Article  Google Scholar 

  14. Alphandery, E., Faure, S., Seksek, O., Guyot, F., and Chebbi, I., ACS Nano., 2011, vol. 5, no. 8, pp. 6279–6296.

    Article  CAS  Google Scholar 

  15. Hungate, R.E., Meth. Microbiol., 1969, vol. 3, pp. 117–132.

    Article  Google Scholar 

  16. Ahmedi, K.S., Milosaviz, N.B., Popović, M., Prodanović, R., Knezevic, Z.D., and Jankov, R.M., J. Serb. Chem. Soc., 2007, vol. 72, no. 12, pp. 1255–1263.

    Article  Google Scholar 

  17. Pan, C., Hu, B., Li, W., Sun, YI., Ye, H., and Zeng, X., J. Mol. Catal. B: Enzym., 2009, vol. 61, no. 3–4, pp. 208–215.

    Article  CAS  Google Scholar 

  18. Akhond, M., Pashangeh, K., Karbalaei-Heidari, H.R., and Absalan, G., Appl. Biochem. Biotechnol., 2016, vol. 180, no. 5, pp. 954–968.

    Article  CAS  Google Scholar 

  19. Bernfeld, P., Meth. Enzymol. I., 1955, pp. 149–158.

    Article  Google Scholar 

  20. Dey, G., Bhupinder, S., and Banerjee, R., Braz. Arch. Biol. Technol., 2003, vol. 46, no. 2, pp. 167–176.

    Article  CAS  Google Scholar 

  21. Alptekin, Ö., Tükel, S.S., Yıldırım, D., and Alagöz, D., J. Mol. Catal. B: Enzym. 2010, vol. 64, no. 3–4, pp. 177–183.

    Article  CAS  Google Scholar 

  22. Osuna, Y., Sandoval, J., Saade, H., López, R.G., Martinez, J.L., Colunga, E.M., et al., Bioprocess Biosyst. Eng., 2015, vol. 38, no. 8, pp. 1437–1445.

    Article  CAS  Google Scholar 

  23. Salihu, A., Alam, M.Z., AbdulKarim, M.I., and Salleh, H.M., J. Mol. Catal. B. 2011, vol. 72, no. 3–4, pp. 187–192.

    Article  CAS  Google Scholar 

  24. Winkler, U.K. and Stuckmann, M.A., J. Bact., 1979, vol. 138, no. 3, pp. 663–670.

    Article  CAS  Google Scholar 

  25. Kouker, G. and Jaeger, K.E., Appl. Environ. Microbiol., 1987, vol. 53, no. 1, pp. 211–213.

    Article  CAS  Google Scholar 

  26. Samad, M.Y., Razak, C.N., Salleh, A.B., Yunus, W.Z., Ampon, K., and Basri, M., J. Microbiol. Methods., 1989, vol. 9, no. 1, pp. 51–56.

    Article  CAS  Google Scholar 

  27. Liu, W., Zhou, F., Zhang, X.Y., Li, Y., Wang, X.Y., Xu, X.M., and Zhang, Y.W., J. Nanosci. Nanotechnol., 2014, vol. 14, no. 4, pp. 3068–3072.

    Article  CAS  Google Scholar 

  28. Hu, F., Deng, C., and Zhang, X., J. Chromatogr. B., 2008, vol. 871, no. 1, pp. 67–71.

    Article  CAS  Google Scholar 

  29. Zhang, A., Ye, F., Lu, J., and Zhao, S., Food Chem., 2013, vol. 141, no. 3, pp. 1854–1859.

    Article  CAS  Google Scholar 

  30. Migneault, I., Dartiguenave, C., Bertrand, M.J., and Waldron, K.C., Biotechnology, 2004, vol. 37, no. 5, pp. 790–802.

    Article  CAS  Google Scholar 

  31. Abdel-Naby, M.A., Appl. Biochem. Biotechnol., 1993, vol. 38, no. 1, pp. 69–81.

    Article  CAS  Google Scholar 

  32. Singh, P., Gupta, P., Singh, R., and Sharma, R., Int. J. Pharm. Life Sci., 2012, vol. 3, no. 12, pp. 2247–2253.

    CAS  Google Scholar 

  33. Doğaç, Y.İ. and Teke, M., Prep. Biochem. Biotechnol., 2013, vol. 43, no. 8, pp. 750–765.

    Article  Google Scholar 

  34. Bussamara, R., Dall’Agnol, L., Schrank, A., Fernandes, K.F., and Vainstein, M.H., Enzyme Res., 2012, vol. 2012, p. 329178.

    Article  Google Scholar 

  35. Jiang, Y., Guo, C., Xia, H., Mahmood, I., Liu, C., and Liu, H., J. Mol. Catal–B: Enz., 2009, vol. 58, no. 1–4, pp. 103–109.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India [Grant number – no. SR/FT/LS-11/2012]. The authors wish to thank the management of Vellore Institute of Technology (VIT) for providing all necessary facilities for the research. The authors acknowledge the FTIR facility at SAS, VIT, Vellore. We would like to thank sophisticated test and instrumentation centre (STIC), CUSAT, Cochin for assistance with acquisition of TEM images.

Availability of data and materials: Data will be made available on request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Suthindhiran.

Ethics declarations

There is no conflict of interest to any of the authors and there are no financial implications in publishing this work. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacob, J.J., Suthindhiran, K. Efficiency of Immobilized Enzymes on Bacterial Magnetosomes. Appl Biochem Microbiol 57, 603–610 (2021). https://doi.org/10.1134/S0003683821050082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683821050082

Keywords:

Navigation