Skip to main content
Log in

Enzymatic Destruction of Cellulose: Characteristics of the Kinetic Interaction of Lytic Polysaccharide Monooxygenases and Individual Cellulases

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

This paper studies the characteristics of the kinetic interaction of lytic polysaccharide monooxygenases (LPMOs) from Thielavia terrestris (TtLPMO), Penicillium verruculosum (PvLPMO), and Trichoderma reesei (TrLPMO) with purified cellobiohydrolases (CBH I and CBH II) and endoglucanase II (EG II) of P. verruculosum during the enzymatic destruction of microcrystalline (Avicel) and amorphous cellulose. TtLPMO belongs to the C1-type of LPMOs, while PvLPMO and TrLPMO are of the mixed C1/C4-type, according to the generally accepted classification of this class of oxidases. Under the action of any of the three LPMO together with CBH II or EG II on Avicel or amorphous cellulose, respectively, the enzymes displayed synergism, which was manifested in an increase in the yield of reducing sugars (RS). The synergism was expressed to the greatest extent in the initial reaction period. The mixtures of PvLPMO and TrLPMO with CBH I also demonstrated synergism on Avicel as a substrate, while TtLPMO, on the contrary, had an inhibitory effect on RS formation from cellulose with CBH I. The observed synergism and antagonism between LPMOs and CBH II/CBH I can be explained in terms of a simple kinetic scheme, in which the first enzyme forms additional ends of polysaccharide molecules that serve as a substrate or inhibitor for the second enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Lynd, L.R., Weimer, P.J., van Zyl, W.H., and Pretorius, I.S., Microbiol. Mol. Biol. Rev., 2002, vol. 66, no. 3, pp. 506–577. https://doi.org/10.1128/MMBR.66.3.506-577.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tiwari, R., Nain, L., Labrou, N.E., and Shukla, P., Crit. Rev. Microbiol., 2018, vol. 44, no. 2, pp. 244–257. https://doi.org/10.1080/1040841X.2017.1337713

    Article  CAS  PubMed  Google Scholar 

  3. Vaaje-Kolstad, G., Westereng, B., Horn, S.J., Liu, Z., Zgai, H., Sorlie, M., and Eijsink, V.G.H., Science, 2010, vol. 330, pp. 219–222. https://doi.org/10.1126/science.1192231

    Article  CAS  PubMed  Google Scholar 

  4. Quinlan, R.J., Sweeney, M.D., Leggio, L.L., Otten, H., Poulsen, J.-C.N., Johansen, K.S., Krogh, K.B.R.M., Jorgensen, C.I., Tovborg, M., Anthonsen, A., Tryfona, T., Walter, C.P., Dupree, P., Xu, F., Davies, G.J., and Walton, P.H., Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, no. 37, pp. 15079–15084. https://doi.org/10.1073/pnas.1105776108

    Article  PubMed  PubMed Central  Google Scholar 

  5. Horn, S.J., Vaaje-Kolstad, G., Westereng, B., and Eijsink, V.G.H., Biotechnol. Biofuels, 2012, vol. 5. Article no. 45. https://doi.org/10.1186/1754-6834-5-45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pollegioni, L., Tonin, F., and Rosini, E., FEBS J., 2015, vol. 282, no. 7, pp. 1190–1213. https://doi.org/10.1111/febs.13224

    Article  CAS  PubMed  Google Scholar 

  7. Levasseur, A., Drula, E., Lombard, V., Coutinho, P.M., and Henrissat, B., Biotechnol. Biofuels, 2013, vol. 6. Article no. 41. https://doi.org/10.1186/1754-6834-6-41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Agger, J.W., Isaksen, T., Varnai, A., Vidal-Melgosa, S., Willats, W.G.T., Ludwig, R., Horn, S.J., Eijsink, V.G.H., and Westereng, B., Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, no. 17, pp. 6287–6292. https://doi.org/10.1073/pnas.1323629111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Frommhagen, M., Sforza, S., Westphal, A.H., Visser, J., Hinz, S.W.A., Koetsier, M.J., van Berkel, W.J.H., Gruppen, H., and Kabel, M.A., Biotechnol. Biofuels, 2015, vol. 8. Article no. 101. https://doi.org/10.1186/s13068-015-0284-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jensen, M.S., Klinkenberg, G., Bissaro, B., Chylenski, P., Vaaje-Kolstad, G., Kvitvang, H.F., Nærdal, G.K., Sletta, H., Forsberg, Z., and Eijsink, V.G.H., J. Biol. Chem., 2019, vol. 294, no. 50, pp. 19349–19364.https://doi.org/10.1074/jbc.RA119.010056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Phillips, C.M., Beeson, W.T., Cate, J.H., and Marletta, M.A., ACS Chem. Biol., 2011, vol. 6, no. 12, pp. 1399–1406. https://doi.org/10.1021/cb200351y

    Article  CAS  PubMed  Google Scholar 

  12. Li, X., Beeson, W.T., Phillips, C.M., Marletta, M.A., and Cate, J.H.D., Structure, 2012, vol. 20, no. 6, pp. 1051–1061. https://doi.org/10.1016/j.str.2012.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hemsworth, G.R., Davies, G.J., and Walton, P.H., Curr. Opin. Struct. Biol., 2013, vol. 23, no. 5, pp. 660–668. https://doi.org/10.1016/j.sbi.2013.05.006

    Article  CAS  PubMed  Google Scholar 

  14. Müller, G., Várnai, A., Johansen, K.S., Eijsink, V.G.H., and Horn, S.J., Biotechnol. Biofuels, 2015, vol. 8. Article no. 187. https://doi.org/10.1186/s13068-015-0376-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim, I.J., Nam, K.H., Yun, E.J., Kim, S., Youn, H.J., Lee, H.J., Choi, I.-G., and Kim, K.H., Appl. Microbiol. Biotechnol., 2015, vol. 99, pp. 8537–8547. https://doi.org/10.1007/s00253-015-6592-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sun, F.F., Hong, J., Hu, J., Saddler, J.N., Fang, X., Zhang, Z., and Shen, S., Enzyme Microb. Technol., 2015, vol. 79-80, pp. 42–48. https://doi.org/10.1016/j.enzmictec.2015.06.020

    Article  CAS  PubMed  Google Scholar 

  17. Ghatge, S.S., Telke, A.A., Waghmode, T.R., Lee, Y., Lee, K.-W., Oh, D.-B., Shin, H.-D., and Kim, S.-W., Appl. Microbiol. Biotechnol., 2015, vol. 99, pp. 3041–3055. https://doi.org/10.1007/s00253-014-6116-6

    Article  CAS  PubMed  Google Scholar 

  18. Hu, J., Chandra, R., Arantes, V., Gourlay, K., van Dyk, J.S., and Saddler, J., Biores. Technol., 2015, vol. 186, pp. 149–153. https://doi.org/10.1016/j.biortech.2015.03.055

    Article  CAS  Google Scholar 

  19. Bulakhov, A.G., Gusakov, A.V., Chekushina, A.V., Satrutdinov, A.D., Koshelev, A.V., Matys, V.Yu., and Sinitsyn, A.P., Biochemistry (Moscow), 2016, vol. 81, no. 5, pp. 530–537.

    CAS  PubMed  Google Scholar 

  20. Kim, I.J., Seo, N., An, H.J., Kim, J.-H., Harris, P.V., and Kim, K.H., Biotechnol. Biofuels, 2017, vol. 10. Article no. 46. https://doi.org/10.1186/s13068-017-0721-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Long, L., Yang, H., Ren, H., Liu, R., Sun, F.F., Xiao, Z., Hu, J., and Xu, Z., ACS Sustainable Chem. Eng., 2020, vol. 8, no. 32, pp. 11986–11993. https://doi.org/10.1021/acssuschemeng.0c02564

    Article  CAS  Google Scholar 

  22. Guo, X., Sang, J., Chai, C., An, Y., Wei, Z., Zhang, H., Ma, L., Dai, Y., Lu, F., and Liu, F., Biochem. Eng. J., 2020, vol. 162. Article no. 107712. https://doi.org/10.1016/j.bej.2020.107712

    Article  CAS  Google Scholar 

  23. Eibinger, M., Ganner, T., Bubner, P., Rosker, S., Kracher, D., Haltrich, D., Ludwig, R., Plank, H., and Nidetzky, B., J. Biol. Chem., 2014, vol. 289, no. 52, pp. 35929–35938. https://doi.org/10.1074/jbc.M114.602227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Karnaouri, A., Muraleedharan, M.N., Dimarogona, M., Topakas, E., Rova, U., Sandren, M., and Christakopoulos, P., Biotechnol. Biofuels, 2017, vol. 10. Article no. 126. https://doi.org/10.1186/s13068-017-0813-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou, H., Li, T., Yu, Z., Ju, J., Zhang, H., Tan, H., Li, K., and Yin, H., Int. J. Biol. Macromol., 2019, vol. 139, pp. 570–576. https://doi.org/10.1016/j.ijbiomac.2019.08.004

    Article  CAS  PubMed  Google Scholar 

  26. Garrido, M.M., Landoni, M., Sabbadin, F., Valacco, M.P., Couto, A., Bruce, N.C., Wirth, S.A., and Campos, E., Appl. Microbiol. Biotechnol., 2020, vol. 104, pp. 9631–9643. https://doi.org/10.1007/s00253-020-10911-6

    Article  CAS  PubMed  Google Scholar 

  27. Keller, M.B., Badino, S.F., Blossom, B.M., McBrayer, B., Borch, K., and Westh, P., ACS Sustainable Chem. Eng, 2020, vol. 8, no. 37, pp. 14117–14126. https://doi.org/10.1021/acssuschemeng.0c04779

    Article  CAS  Google Scholar 

  28. Tokin, R., Ipsen, J.O., Westh, P., and Johansen, K.S., Biotechnol. Lett., 2020, vol. 42, pp. 1975–1984. https://doi.org/10.1007/s10529-020-02922-0

    Article  CAS  PubMed  Google Scholar 

  29. Pierce, B.C., Agger, J.W., Wichmann, J., and Meyer, A.S., Enzyme Microb. Technol., 2017, vol. 98, pp. 58–66. https://doi.org/10.1016/j.enzmictec.2016.12.007

    Article  CAS  PubMed  Google Scholar 

  30. Semenova, M.V., Gusakov, A.V., Telitsin, V.D., Rozhkova, A.M., Kondratyeva, E.G., and Sinitsyn, A.P., Biochim. Biophys. Acta—Proteins Proteomics, 2020, vol. 1868, no. 1. Article no. 140297. https://doi.org/10.1016/j.bbapap.2019.140297

    Article  CAS  Google Scholar 

  31. Morozova, V.V., Gusakov, A.V., Andrianov, R.M., Pravilnikov, A.G., Osipov, D.O., and Sinitsyn, A.P., Biotechnol. J., 2010, vol. 5, no. 8, pp. 871–880. https://doi.org/10.1002/biot.201000050

    Article  CAS  PubMed  Google Scholar 

  32. Dotsenko, A.S., Rozhkova, A.M., and Gusakov, A.V., Moscow Univ. Chem. Bull., 2015, vol. 70, no. 6, pp. 283–286. https://doi.org/10.3103/S0027131415060024

    Article  Google Scholar 

  33. Korotkova, O.G., Semenova, M.V., Morozova, V.V., Zorov, I.N., Sokolova, L.M., Bubnova, T.M., Okunev, O.N., and Sinitsyn, A.P., Biochemistry (Moscow), 2009, vol. 74, no. 5, pp. 569–577. https://doi.org/10.1134/S0006297909050137

    Article  CAS  Google Scholar 

  34. Wood, T.M., Methods Enzymol., 1988, vol. 160, pp. 19–25. https://doi.org/10.1016/0076-6879(88)60103-0

    Article  CAS  Google Scholar 

  35. Nelson, N., J. Biol. Chem., 1944, vol. 153, pp. 375–380.

    Article  CAS  Google Scholar 

  36. Peterson, G.L., Anal. Biochem., 1979, vol. 100, no. 2, pp. 201–220. https://doi.org/10.1016/0003-2697(79)90222-7

    Article  CAS  PubMed  Google Scholar 

  37. Westereng, B., Agger, J.W., Horn, S.J., Vaaje-Kolstad, G., Aachmann, F.L., Stenstrom, Y.H., and Eijsink, V.G.H., J. Chromatogr., A, 2013, vol. 1271, no. 1, pp. 144–152. https://doi.org/10.1016/j.chroma.2012.11.048

    Article  CAS  Google Scholar 

  38. Hildebrand, A., Addison, J.B., Kasugo, T., and Fan, Z., Biochem. Eng. J., 2016, vol. 109, pp. 236–242. https://doi.org/10.1016/j.bej.2016.01.024

    Article  CAS  Google Scholar 

  39. Villares, A., Moreau, C., Bennati-Granier, C., Garajova, S., Foucat, L., Falourd, X., Saake, B., Berrin, J.-G., and Cathala, B., Sci. Rep., 2017, vol. 7. Article no. 40262. https://doi.org/10.1038/srep40262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Song, B., Li, B., Wang, X., Shen, W., Park, S., Collings, C., Feng, A., Smith, S.J., Walton, J.D., and Ding, S.-Y., Biotechnol. Biofuels, 2018, vol. 11. Article no. 41. https://doi.org/10.1186/s13068-018-1023-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Forsberg, Z., Sørlie, M., Petrović, D., Courtade, G., Aachmann, F.L., Vaaje-Kolstad, G., Bissaro, B., Rohr, A.K., and Eijsink, V.G.H., Curr. Opin. Struct. Biol., 2019, vol. 59, pp. 54–64. https://doi.org/10.1016/j.sbi.2019.02.015

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was carried out within the framework of the research work “Molecular design, structural-functional analysis, and regulation of enzyme systems, cell structures, bionanomaterials: fundamental bases and applications in technology, medicine, and environmental protection,” state registration number AAAA-A21-121011290089-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Gusakov.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not describe any research involving humans or animals as subjects.

Additional information

Translated by L. Solovyova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenova, M.V., Gusakov, A.V., Telitsin, V.D. et al. Enzymatic Destruction of Cellulose: Characteristics of the Kinetic Interaction of Lytic Polysaccharide Monooxygenases and Individual Cellulases. Appl Biochem Microbiol 57, 618–625 (2021). https://doi.org/10.1134/S0003683821050136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683821050136

Keywords:

Navigation