Skip to main content
Log in

Streptomyces variabilis Isolate MW091521: a New Microbial Source of Heliomycin

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

A total of 192 different Streptomyces isolates were recovered from 34 soil samples collected from different localities in Egypt. The cytotoxic activities of culture supernatant of each of the recovered isolate were investigated against Caco-2 cell line using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The Streptomyces isolate coded S19, that showed the highest cytotoxic activity against Caco-2 cell line (CD50 of 26.4 µg/mL), was identified using 16S rRNA gene sequence analysis as Streptomyces variabilis isolate MW091521. The influence of cultural parameters affecting the cytotoxic activity of the respective isolate including the different culture media, initial pH value, temperature and rotation speed was investigated. A maximum cytotoxic activity (CD50 of 13.4 µg/mL) was obtained using the culture medium of soybean meal at an initial pH of 7.0, incubation temperature 28°C and 200 rpm. Thereafter, the fermentation was conducted in a 14 L laboratory fermenter under the previously stated optimum conditions with the aim of extraction, and purification of cytotoxic metabolite(s). Fractionation of the ethyl acetate extract followed by advanced spectroscopic analysis using LC/ESI/MS as well as 1D and 2D NMR experiments yielded the cytotoxic metabolite heliomycin. To the best of our knowledge, this is the first report on the production of heliomycin by Streptomyces variabilis isolate MW091521.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Calisto, R., Sæbø, E.F., Storesund, J.E., Øvreås, L., Herfindal, L., and Lage, O.M., Front. Mar. Sci., 2019, vol. 5, no. 499, pp. 1–10.

    Article  Google Scholar 

  2. Mann, J., Nat. Rev. Cancer, 2002, vol. 2, no. 2, pp. 143–148.

    Article  CAS  Google Scholar 

  3. Blunt, J.W., Copp, B.R., Hu, W.-P., Munro, M.H.G., Northcote, P.T., and Prinsep, M.R., Nat. Prod. Rep., 2009, vol. 26, no. 2, pp. 170–244.

    Article  CAS  Google Scholar 

  4. Berdy, J., J. Antibiotechnol., 2005, vol. 58, pp. 1–26.

    Article  CAS  Google Scholar 

  5. Kharat, K.R., Kharat, A., and Hardikar, B.P., Afr. J. Biotechnol., 2009, vol. 8, no. 23, pp. 6645–6648.

    Google Scholar 

  6. Nakae, K., Yoshimoto, Y., Sawa, T., Homma, Y., Hamada, M, Takeuchi, T., and Imoto, M., J. Antibiot., 2000, vol. 53, no. 10, pp. 1130–1136.

    Article  CAS  Google Scholar 

  7. Felth, J., Rickardson, L., Rosén, J., Wickström, M., Fryknäs, M., Lindskog, M., et al., J. Nat. Prod., 2009, vol. 72, no. 11, pp. 1969–1974.

    Article  CAS  Google Scholar 

  8. Ceylan, O., Okmen, G., and Ugur, A., EurAsian J. Biosci., 2008, vol. 2, no. 1, pp. 73–82.

    CAS  Google Scholar 

  9. Siddique, S., Syed, Q., Adnan, A., and Qureshi, F.A., Jundishapur J. Microbiol., 2014, vol. 7, no. 6. https://doi.org/10.5812/jjm.10366

  10. Strober, W., Curr. Protoc. Immunol., 2001. https://doi.org/10.1002/0471142735.ima03bs21

  11. Peng, Y., Wang, Y.H., Zhang, S.L., Chu, J., Zhuang, Y.P., Wang, M.L., and Zhou, J., J. Microbiol. Methods, 2008, vol. 73, no. 2, pp. 105–110.

    Article  Google Scholar 

  12. Saliba, A.M., Filloux, A., Ball, G., Silva, A.S.V., Assis, M.-C., and Plotkowski, M.-C., Microb. Pathog., 2002, vol. 33, no. 4, pp. 153–166.

    Article  CAS  Google Scholar 

  13. Murakami, J., Kishi, K., Hirai, K., Hiramatsu, K., Yamasaki, T., and Nasu, M., Int. J. Antimicrob. Agents, 2000, vol. 15, no. 2, pp. 103–109.

    Article  CAS  Google Scholar 

  14. Eden, P.A., Schmidt, T.M., Blakemore, R.P., and Pace N.R., Int. J. Syst. Bacteriol., 1991, vol. 41, no. 2, pp. 324–325.

    Article  CAS  Google Scholar 

  15. Kavitha, A. and Vijayalakshmi, M., JASR, 2009, vol. 5, no. 12, pp. 2138–2147.

    CAS  Google Scholar 

  16. Mahmoud, A.A., Essawy, E.A., Abdalla, M.S. and Abdelfattah, M.S., J. Biosci. Appl. Res., 2019, vol. 5, pp. 429–436.

    Article  Google Scholar 

  17. Radwan, H.H., Moussa, I.M., and Alsarra, I.A., Afr. J. Biotechnol., 2013, vol. 10, no. 9, pp. 1690–1965.

    Google Scholar 

  18. Al-Humiany, A.U.-R., Res. J. Microbiol., 2011, vol. 6, no. 4, pp. 328–342.

    Article  CAS  Google Scholar 

  19. Sudha, S. and Masilamani, S.M., Asian Pac. J. Trop. Biomed. 2012, vol. 2, no. 10, pp. 770–773.

    Article  CAS  Google Scholar 

  20. Osada, N., Kohara, A., Yamaji, T., Hirayama, N., Kasai, F., Sekizuka, T., et al., DNA Res., 2014, vol. 21, no. 6, pp. 673–683.

    Article  CAS  Google Scholar 

  21. Sato, B., Muramatsu, H., Miyauchi, M., Hori, Y., Takase, S., Motohero, H., et al., J. Antibiot., 2000, vol. 53, no. 2, pp. 123–130.

    Article  CAS  Google Scholar 

  22. Maskey, R.P., Helmke, E., Kayser, O., Fiebig, H., Maier, A., Busche, A., and Laatsch, H., J. Antibiot., 2004, vol. 57, no. 12, pp. 771–779.

    Article  CAS  Google Scholar 

  23. Hayakawa, Y., Shirasaki, S., Shiba, S., Kawasaki, T., Matsuo, Y., Adachi, K., and Shizuri, Y., J. Antibiot., 2007, vol. 60, no. 3, pp. 196–200.

    Article  CAS  Google Scholar 

  24. Ahmed, A.A., Saudi J. Biol. Sci., 2007, vol. 14, no. 1, pp. 7–16.

    Google Scholar 

  25. Atta, H.M., El-Sehrawi, M.H., and Bahobail A.S., Am. J. Sci., 2011, vol. 7, no. 3, pp. 13–22.

    Google Scholar 

  26. Arora, S.K., J. Antibiot., 1985, vol. 38, no. 1, pp. 113–115.

    Article  CAS  Google Scholar 

  27. Gorajana, A., Venkatesan, M., Vinjamuri, S., Kurada, B., Peela, S., Jangam, et al., Microbiol. Res., 2007, vol. 162, no. 4, pp. 322–327.

    Article  CAS  Google Scholar 

  28. Abdelfattah, M.S., Elmallah, M.I.Y., Faraag, A.H.I., Hebishy, A.M.S., and Ali, N.H., 3 Biotech, 2018, vol. 8, no. 6, рр. 282–290.

  29. Slesarchuk, N.A., Khvatov, E.V., Chistov, A.A., Proskurin, G.V., Nikitin, T.D., Lazarevich A.I., et al., Bioorganic Med. Chem. Lett., 2020, vol. 30, no. 10, art. 127100.

  30. Chueh, P.J., Islam, A., Chen, X.Q., Chiu, S.H., Tikhomirov, A.S., and Shchekotikhin, A.E., Cancer Res., 2020, vol. 80, no. 16.  https://doi.org/10.1158/1538-7445.AM2020-6224

Download references

ACKNOWLEDGMENTS

We hereby acknowledge the Postgraduate and Scientific Research Sector of Ain Shams University for supplying us the chemicals required for performing the practical work and for providing all the required facilities to perform the experiments.

Ethics approval and consent to participate. Not applicable.

Consent for publication. Not applicable.

Availability of data and materials. All data generated or analyzed during this study are included in this published article in the main manuscript.

Funding

The authors declare that no funding was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Aboshanab.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu Zaid, A.S., Yassien, M.A., Aboshanab, K.M. et al. Streptomyces variabilis Isolate MW091521: a New Microbial Source of Heliomycin. Appl Biochem Microbiol 57, 564–570 (2021). https://doi.org/10.1134/S0003683821050021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683821050021

Keywords:

Navigation