Skip to main content
Log in

Investigations on caesium-incorporated rubidium tin chloride-defect perovskite nanomaterial as highly efficient ultraviolet photocatalysts

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Recently perovskites-based inorganic compounds have been researched incredibly for their photocatalytic applications. In this work, rubidium tin chloride [Rb2SnCl6] and caesium-incorporated rubidium [(RbXCs1-X)2SnCl6]-defect perovskites were synthesized for photocatalytic applications. This material is very useful for the degradation of dyes under UV irradiation among other photocatalysts, because of its superior properties such as nontoxicity, low cost, simple preparation methods and long-term thermal stability. The crystal structure, morphology and elemental composition of synthesized defect perovskite materials have been analysed using XRD, FESEM and EDAX mapping analysis. The UV studies reveal that the band-gap values were tuned (from 2.71 eV in Rb2SnCl6 to 3.78 eV in (Rb0.5Cs0.5)2SnCl6), resulting in a blue shift of the PL emission peak (from 458 to 328 nm) due to the incorporation of caesium in rubidium site. The thermal stability of (Rb0.5Cs0.5)2SnCl6 is enhanced over other synthesized defect perovskite materials because 76% of samples remained at the highest temperature of 750 °C. Synthesized defect perovskite materials were used in the photocatalytic degradation of methylene blue dye under UV light radiation. Furthermore, an excellent photocatalytic degradation is observed for (Rb0.5Cs0.5)2SnCl6 (78% to 85%) compared to other defect perovskite materials even after 120 min irradiation. The increase in photocatalytic efficiency of (Rb0.5Cs0.5)2SnCl6 is due to strong absorption of light, large separation of electron–holes pairs and the size of the nanoparticles. Also, the radical trapping experiment showed that the super oxide radicals (.O2) and photo-generated holes (h+) were the predominant active species in the photocatalytic degradation of methylene blue dye process. This study concludes that the defect perovskites are the potential materials for photocatalytic application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12

Similar content being viewed by others

References

  1. H.E. Ghatami, A. Laref, S. Laref, J. Mater. Sci.: Mater. Electron. 30, 711–720 (2019)

    Google Scholar 

  2. A.K. Tangra, M. Sharma, U.L. Zainudeen, G.S. Lotey, J. Mater. Sci.: Mater. Electron. 31, 13657–13666 (2020)

    CAS  Google Scholar 

  3. R. Ganesan, S.P. Vinodhini, V. Balasubramani, G. Parthipan, T.M. Sridhar, R. Arulmozhi, R. Muralidharan, New J. Chem. 43, 15258–15266 (2019)

    Article  CAS  Google Scholar 

  4. S.M. Jassim, N.A. Bakr, F.I. Mustafa, J. Mater. Sci.: Mater. Electron. 31, 16199–16207 (2020)

    CAS  Google Scholar 

  5. R. Nagarajan, S. Ahmad, M. Kumar, G.V. Gupta, Prakash, , Eur. J. Inorg. Chem. 45, 4295–4302 (2020)

    Article  Google Scholar 

  6. Z. Tan, J. Li, C. Zhang, Z. Li, Q. Hu, Z. Xiao, T. Kamiya, H. Hosono, G. Niu, E. Lifshitz, Y. Cheng, J. Tang, Adv. Funct. Mater 28(29), 1801131 (2018)

    Article  Google Scholar 

  7. A. Kanwat, E. Moyen, S. Cho, J. Jang, A.C.S. Appl, Mater. Interfaces 10, 16852–16860 (2018)

    Article  CAS  Google Scholar 

  8. Y.H. Song, S.H. Choi, W.K. Park, J.S. Yoo, B.K. Kang, S.B. Kwon, H.S. Jung, W.S. Yang, D.H. Yoon, New J. Chem. 41, 14076–14079 (2017)

    Article  CAS  Google Scholar 

  9. S. T. Umedov, A. V. Grigorieva, L. S. Lepnev, A. V. Knotko, K. Nakabayashi, S. iOhkoshi, A. V. Shevelkov, Front. Chem. 8, 564 (2020)

    Article  CAS  Google Scholar 

  10. H. Mehdi, M. Matheron, A. Mhamdi, M. Manceau, C. Roux, S. Berson, S. Cros, A. Bouazizi, J. Mater. Sci.: Mater. Electron. 31, 10251–10259 (2020)

    CAS  Google Scholar 

  11. NREL Efficiency chart https://www.nrel.gov/pv/cell-efficiency.html.

  12. W. Zhu, G. Xin, Y. Wang, X. Min, T. Yao, W. Xu, M. Fang, S. Shi, J. Shi, J. Lian, J. Mater. Chem. A 6, 2577–2584 (2018)

    Article  CAS  Google Scholar 

  13. K. Sveinbjornsson, N. Thein, Z. Saki, S. Svanström, W. Yang, U.B. Cappel, H. Rensmo, G. Boschloo, K. Aitola, E.M.J. Johansson, Sustainable Energy Fuels 2, 606–615 (2018)

    Article  Google Scholar 

  14. Z. Zhang, C. Wu, D. Wang, G. Liu, Q. Zhang, W. Luo, X. Qi, X. Guo, Y. Zhang, Y. Lao, B. Qu, L. Xiao, Z. Chen, Org. Electron. 74, 204–210 (2019)

    Article  CAS  Google Scholar 

  15. P. Liu, Y. Gong, Y. Xiao, M. Su, S. Kong, F. Qi, H. Zhang, S. Wang, X. Sun, C. Wang, X.Z. Zhao, Chem. Commun 55, 218–221 (2019)

    Article  Google Scholar 

  16. D. Amgar, T. Binyamin, V. Uvarov, L. Etgar, Nanoscale 10, 6060–6068 (2018)

    Article  CAS  Google Scholar 

  17. A. Bernasconi, A. Rizzo, A. Listorti, A. Mahata, E. Mosconi, F.D. Angelis, L. Malavasi, Chem. Mater. 31, 3527–3533 (2019)

    Article  CAS  Google Scholar 

  18. T. Duong, H. K. Mulmudi, H. Shen, Y. Wu, C. Barugkin, Y. O. Mayon, H. T. Nguyen, D. Macdonald, J. Peng, M. Lockrey, W. Li, Y. B. Cheng, T. P. White, K. Weber, K. Catchpole, Nano Energy 30, 330–340 (2016)

    Article  CAS  Google Scholar 

  19. H. Kim, H. R. Byun, M. S. Jeong, Sci. Rep. 9 2694 (2019)

    Article  Google Scholar 

  20. M. Ranjeh, F. Beshkar, O. Amiri, M.S. Niasari, H. Moayedi, J. Alloy. Compd. 815, 15241 (2020)

    Article  Google Scholar 

  21. O. Amiri, F. Beshkar, S.S. Ahmed, P.H. Mahmood, A.A. Dezaye, Int. J. Hydrogen Energy 46, 6547–6560 (2021)

    Article  CAS  Google Scholar 

  22. S.A. Shoberi, M.M. Kamazani, F. Beshkar, J. Mater. Sci.: Mater. Electron. 28, 8108–8115 (2017)

    Google Scholar 

  23. B. Revathi, L. Balakrishnan, S. Pichaimuthu, A.N. Grace, N.K. Chandar, J. Mater. Sci.: Mater. Electron. 24, 22487–22495 (2020)

    Google Scholar 

  24. M. Ranjeh, F. Beshkar, M.S. Niasari, Compos. B 172, 33–40 (2019)

    Article  CAS  Google Scholar 

  25. K.F. Mouraa, L. Chantellea, D. Rosendoa, E. Longob, I. Maria Garcia, D. Santosa, Mater. Res. 20, 317–324 (2017)

    Article  Google Scholar 

  26. S. Alkaykh, A. Mbarek, E.E. Ali-Shattle, Heliyon 6, 03663 (2020)

    Article  Google Scholar 

  27. X. Qiu, B. Cao, S. Yuan, X. Chen, Z. Qiu, Y. Jiang, Q. Ye, H. Wang, H. Zeng, J. Liu, M.G. Kanatzidis, Sol. Energy Mater. Sol. Cells 159, 227–234 (2017)

    Article  CAS  Google Scholar 

  28. D. Prochowicz, M.M. Tavakoli, A. Kalam, R.D. Chavan, S. Trivedi, M. Kumar, P. Yadav, J. Mater. Chem. A 7, 8218–8225 (2019)

    Article  CAS  Google Scholar 

  29. M.R. Linaburg, E.T. McClure, J.D. Majher, P.M. Woodward, Chem. Mater. 8, 3507–3514 (2017)

    Article  Google Scholar 

  30. A. Kaltzoglou, M. Antoniadou, A.G. Kontos, C.C. Stoumpos, D. Perganti, E. Siranidi, V. Raptis, K. Trohidou, V. Psycharis, M.G. Kanatzidis, J. Phys. Chem. C 120(22), 11777–11785 (2016)

    Article  CAS  Google Scholar 

  31. K. Nagamoto, Infrared and Raman Spectra of inorganic and coordination Compounds, 1872–1892 (2009)

  32. J.L. Xie, Z.Q. Huang, B. Wang, W.J. Chen, W.X. Lu, X. Liu, J.L. Song, Nanoscale 11, 6719–6726 (2019)

    Article  CAS  Google Scholar 

  33. T. Duong, Y. Wu, H. Shen, J. Peng, X. Fu, D. Jacobs, E.C. Wang, T.C. Kho, K.C. Fong, M. Stocks, E. Franklin, A. Blakers, N. Zin, K. McIntosh, W. Li, Y.B. Cheng, T.P. White, K. Webe, K. Catchpole, Adv. Energy Mater. 7, 1700228 (2017)

    Article  Google Scholar 

  34. M. Saliba, T. Matsui, K. Domanski, J. Seo, A. Ummadisingu, S.M. Zakeeruddin, J.P.C. Baena, W.R. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Science 354, 206–209 (2016)

    Article  CAS  Google Scholar 

  35. M. Kato, A. Suzuki, Y. Ohishi, H. Tanaka, T. Oku, AIP Conference Proceedings, 1929, 020015 (2018)

  36. C. C. Chung, S. Narra, E. Jokar, H. P. Wu, E. W. Guang Diau, J. Mater. Chem. A 5, 13957–13965 (2017)

    Article  CAS  Google Scholar 

  37. S. M. Abdulrahim, Z. Ahamed, J. Bhagatra, N. J. Al-Thani, Nanomaterials, 10, 1635 (2020)

    Article  CAS  Google Scholar 

  38. I.J. Park, S. Seo, M.A. Park, S. Lee, D.H. Kim, K. Zhu, H. Shin, J.Y. Kim, A.C.S. Appl, Mater. Interfaces 9(48), 41898–41905 (2017)

    Article  CAS  Google Scholar 

  39. A. Abdulrahman, P. Yadav, M. Alotaibi, N. Arora, A. Alyamani, H. Albrithen, M.I. Dar, S.M. Zakeeruddin, M. Gratzel, J. Phys. Chem. C 121, 24903–24908 (2017)

    Article  Google Scholar 

  40. S.M. Abdulrahim, Z. Ahmad, J. Bahadra, N.J. Al-Thani, Nanomaterials 10, 1635 (2020)

    Article  CAS  Google Scholar 

  41. M. Amini, M. Ashrafi, S. Gautam, K.H. Chae, RSC Adv. 5, 37469–37475 (2015)

    Article  CAS  Google Scholar 

  42. B.M. Bresolin, Y. Park, D.W. Bahnemann, Catalysts 10, 709 (2020)

    Article  CAS  Google Scholar 

  43. J. Ge, Y. Zhang, Y.J. Heo, S.J. Park, Catalysts 9, 122 (2020)

    Article  Google Scholar 

  44. A. Haruna, I. Abdulkadir and S.O. Idris , Heliyon, 6, e03237 (2020)

  45. M. Valian, F. Beshkar, M.S. Niasari, J. Mater. Sci.: Mater. Electron. 28, 6292–6300 (2017)

    CAS  Google Scholar 

  46. P. Shirazi, M. Rahbar, M. Behpour, M. Ashrafi, New J. Chem 44, 231–238 (2020)

    Article  CAS  Google Scholar 

  47. H.Abbas Alshamsi, F.Beshkar, O.Amiri and M.S. Niasari, Chemospere, 274, 129765(2021)

  48. H. Liu, M. Li, J. Yang, C. Hu, J. Shang, H. Zhai, Material Research Bulletin 106, 19–279 (2018)

    Article  CAS  Google Scholar 

  49. M.M. Kamazani, R. Rahmatolahzadeh, S.A. Shobeiri, F. Beshkar, Ultrason. Sonochem. 39, 233–239 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors V. Balasubramani acknowledge for financial support through CSIR – Senior Research Fellowship (Ref. No 09/115/0791/2019)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Muralidharan.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 366 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesan, R., Muralidharan, R., Parthipan, G. et al. Investigations on caesium-incorporated rubidium tin chloride-defect perovskite nanomaterial as highly efficient ultraviolet photocatalysts. J Mater Sci: Mater Electron 32, 25409–25424 (2021). https://doi.org/10.1007/s10854-021-07001-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07001-2

Navigation