Skip to main content
Log in

An electrochemical nano-sensor for determination of hydrazine using modified electrode by La2O3–Co3O4 nanohybrids and ionic liquid

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A non-enzymatic electrochemical sensor (modified carbon paste electrode (CPE) using La2O3–Co3O4 nanocomposite and ionic liquid) was made for sensitive quantification of hydrazine. The scanning electron microscopic (SEM), X-ray powder diffraction (XRD) as well as Fourier transform infrared spectroscopy (FT-IR) were employed for finding the nanocomposite characteristics. The electrochemical measurements revealed that combination of La2O3–Co3O4 nanocomposite and ionic liquid and carbon paste showed very good voltammetric responses toward hydrazine oxidation with the broad linear ranges between 0.1 and 120.0 μM and low detection limit (DL) of 0.01 μM, and 203.6 μA mM−1 cm−2 sensitivity. Then, hydrazine in different water samples was determined by the standard addition procedure. We observed reasonable findings with relative standard deviation (RSD) of less than 3.4% and 96.0–103.0% recovery for 5 parallel measurements. Hence, La2O3–Co3O4/CPE can be considered as one of the novel platforms for hydrazine to be electrochemically detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Devasenathipathy, V. Mani, S.M. Chen, Highly selective amperometric sensor for the trace level detection of hydrazine at bismuth nanoparticles decorated graphene nanosheets modified electrode. Talanta 124, 43–51 (2014)

    Article  CAS  Google Scholar 

  2. J. Zhang, W.B. Gao, M.L. Dou, F. Wang, J.J. Liu, Z.L. Li, J. Ji, Nanorod-constructed porous Co3O4 nanowires: highly sensitive sensors for the detection of hydrazine. Analyst 140, 1686–1692 (2015)

    Article  CAS  Google Scholar 

  3. S. Zhao, L.L. Wang, T.T. Wang, Q.H. Han, S.K. Xu, A high-performance hydrazine electrochemical sensor based on gold nanoparticles/single-walled carbon nanohorns composite film. Appl. Surf. Sci. 369, 36–42 (2016)

    Article  CAS  Google Scholar 

  4. C. Duan, Y. Dong, Q. Sheng, J. Zheng, A high-performance non-enzymatic electrochemical hydrazine sensor based on NiCo2S4 porous sphere. Talanta 198, 23–29 (2019)

    Article  CAS  Google Scholar 

  5. M.B. Gholivand, A. Azadbakht, A novel hydrazine electrochemical sensor based on a zirconium hexacyanoferrate film-bimetallic Au-Pt inorganic-organic hybrid nanocomposite onto glassy carbon-modified electrode. Electrochim. Acta 56, 10044–10054 (2011)

    Article  CAS  Google Scholar 

  6. M. Mazloum-Ardakani, A. Khoshroo, An electrochemical study of benzofuran derivative in modified electrode-based CNT/ionic liquids for determining nanomolar concentrations of hydrazine. Electrochim. Acta 103, 77–84 (2013)

    Article  CAS  Google Scholar 

  7. Y. Wang, Y. Wan, D. Zhang, Reduced graphene sheets modified glassy carbon electrode for electrocatalytic oxidation of hydrazine in alkaline media. Electrochem. Commun. 12, 187–190 (2010)

    Article  CAS  Google Scholar 

  8. F. Luan, S. Zhang, D. Chen, K. Zheng, X. Zhuang, CoS2-decorated ionic liquid-functionalized graphene as a novel hydrazine electrochemical sensor. Talanta 182, 529–535 (2018)

    Article  CAS  Google Scholar 

  9. M.M. Shahid, P. Rameshkumar, W.J. Basirunc, U. Wijayantha, W.S. Chiu, P.S. Khiew, N.M. Huang, An electrochemical sensing platform of cobalt oxide@gold nanocubes interleaved reduced graphene oxide for the selective determination of Hydrazine. Electrochim. Acta 259, 606–616 (2018)

    Article  CAS  Google Scholar 

  10. L. Cui, C. Ji, Z. Peng, L. Zhong, C. Zhou, L. Yan, S. Qu, S. Zhang, C. Huang, X. Qian, Unique tri-output optical probe for specific and ultrasensitive detection of hydrazine. Anal. Chem. 86, 4611–4617 (2014)

    Article  CAS  Google Scholar 

  11. L. Cui, Z. Peng, C. Ji, J. Huang, D. Huang, J. Ma, S. Zhang, X. Qian, Y. Xu, Hydrazine detection in the gas state and aqueous solution based on the Gabriel mechanism and its imaging in living cells. Chem. Commun. 50, 1485–1487 (2014)

    Article  CAS  Google Scholar 

  12. G. Choudhary, H. IIansen, S. Donkin, C. Kirman, Toxicological profile for hydrazines. US Department of Health and Human Service, 5, (1997)

  13. S. Dutta, C. Ray, S. Mallick, S. Sarkar, A. Roy, T. Pal, Au@ Pd core–shell nanoparticles decorated reduced graphene oxide: a highly sensitive and selective platform for electrochemical detection of hydrazine. RSC Adv. 5, 51690–51700 (2015)

    Article  CAS  Google Scholar 

  14. H. Karimi-Maleh, M. Moazampour, A.A. Ensafi, S. Mallakpour, M. Hatami, An electrochemical nanocomposite modified carbon paste electrode as a sensor for simultaneous determination of hydrazine and phenol in water and wastewater samples. Environ. Sci. Pollut. Res. 21, 5879–5888 (2014)

    Article  CAS  Google Scholar 

  15. A.A. Ensafi, B. Rezaei, Flow injection determination of hydrazine with fluorimetric detection. Talanta 47, 645–649 (1998)

    Article  CAS  Google Scholar 

  16. D. Jayasri, S.S. Narayanan, Amperometric determination of hydrazine at manganese hexacyanoferrate modified graphite–wax composite electrode. J. Hazard. Mater. 144, 348–354 (2007)

    Article  CAS  Google Scholar 

  17. J.S. Budkuley, Determination of hydrazine and sulphite in the presence of one another. Microchim. Acta 108, 103–105 (1992)

    Article  CAS  Google Scholar 

  18. A. Safavi, M.A. Karimi, Flow injection chemiluminescence determination of hydrazine by oxidation with chlorinated isocyanurates. Talanta 58, 785–792 (2002)

    Article  CAS  Google Scholar 

  19. A. Safavi, A.A. Ensafi, Kinetic spectrophotometric determination of hydrazine. Anal. Chim. Acta 300, 307–311 (1995)

    Article  CAS  Google Scholar 

  20. Q. Yi, W. Yu, Nanoporous gold particles modified titanium electrode for hydrazine oxidation. J. Electroanal. Chem. 633, 159–164 (2009)

    Article  CAS  Google Scholar 

  21. D. Afzali, H. Karimi-Maleh, M.A. Khalilzadeh, Sensitive and selective determination of phenylhydrazine in the presence of hydrazine at a ferrocene-modified carbon nanotube paste electrode. Environ. Chem. lett. 9, 375–381 (2011)

    Article  CAS  Google Scholar 

  22. A. Tahira, A. Nafady, M. Arain, S.T.H. Sherazi, T. Shaikh, Q. Baloach, M. Willander, Z.H. Ibupoto, The synthesis of new nanostructures of CuO using ascorbic acid as growth directing agent and their sensitive electrochemical detection of hydrazine. Sens. Lett. 14, 611–615 (2016)

    Article  Google Scholar 

  23. Y. Liu, Y. Li, X. He, In situ synthesis of ceria nanoparticles in the ordered mesoporous carbon as a novel electrochemical sensor for the determination of hydrazine. Anal. Chim. Acta 819, 26–33 (2014)

    Article  CAS  Google Scholar 

  24. C. Karuppiah, S. Palanisamy, S.-M. Chen, S.K. Ramaraj, P.A. Periakaruppan, novel and sensitive amperometric hydrazine sensor based on gold nanoparticles decorated graphite nanosheets modified screen-printed carbon electrode. Electrochim. Acta 139, 157–164 (2014)

    Article  CAS  Google Scholar 

  25. C. Zhang, G. Wang, Y. Ji, M. Liu, Y. Feng, Z. Zhang, B. Fang, Enhancement in analytical hydrazine based on gold nanoparticles deposited on ZnO-MWCNTs films. Sens. Actuator B 150, 247–253 (2010)

    Article  CAS  Google Scholar 

  26. P.K. Rastogi, V. Ganesan, S. Krishnamoorthi, Palladium nanoparticles decorated gaur gum-based hybrid material for electrocatalytic hydrazine determination. Electrochim. Acta 125, 593–600 (2014)

    Article  CAS  Google Scholar 

  27. J. Ding, S. Zhu, T. Zhu, W. Sun, Q. Li, G. Wei, Z. Su, Hydrothermal synthesis of zinc oxidereduced graphene oxide nanocomposites for an electrochemical hydrazine sensor. RSC Adv. 5, 22935–22942 (2015)

    Article  Google Scholar 

  28. S.Z. Mohammadi, H. Beitollahi, M. Askari, R. Hosseinzadeh, Application of a modified carbon paste electrode using core-shell magnetic nanoparticle and modifier for simultaneous determination of norepinephrine, acetaminophen and tryptophan. Rus. J. Electrochem. 57, 74–84 (2021)

    Article  Google Scholar 

  29. S. Tajik, H. Beitollahi, F. Garkani Nejad, K.O. Kirlikovali, Q. Van Le, H.W. Jang, R.S. Varma, O.K. Farha, M. Shokouhimehr, Recent electrochemical applications of metal-organic framework-based materials. Cryst Growth Des. 20, 7034–7064 (2020)

    Article  CAS  Google Scholar 

  30. Y. Pei, M. Hu, Y. Xia, W. Huang, Z. Li, S. Chen, Electrochemical preparation of Pt nanoparticles modified nanoporous gold electrode with highly rough surface for efficient determination of hydrazine. Sens. Actuators B 304, 127416 (2020)

    Article  CAS  Google Scholar 

  31. S.Z. Mohammadi, H. Beitollahi, M. Kaykhaii, N. Mohammadizadeh, S. Tajik, R. Hosseinzadeh, Simultaneous determination of droxidopa and carbidopa by carbon paste electrode functionalized with NiFe2O4 nanoparticle and 2-(4-ferrocenyl- [1,2,3] triazol-1-yl)-1-(naphthalen-2-yl) ethenone. Measurement 155, 107522 (2020)

    Article  Google Scholar 

  32. H. Beitollahi, F. Movahedifar, S. Tajik, S. Jahani, A review on the effects of introducing CNTs in the modification process of electrochemical sensors. Electroanalysis 31, 1195–1203 (2019)

    Article  CAS  Google Scholar 

  33. V. Sudha, S.M. SenthilKumar, R. Thangamuthu, NiCo2O4 nanorod: synthesis and electrochemical sensing of carcinogenic hydrazine. Inorg. Chem. Commun. 116, 107927 (2020)

    Article  CAS  Google Scholar 

  34. H. Mahmoudi-Moghaddam, S. Tajik, H. Beitollahi, A new electrochemical DNA biosensor based on modified carbon paste electrode using graphene quantum dots and ionic liquid for determination of topotecan. Microchem. J. 150, 104085 (2019)

    Article  CAS  Google Scholar 

  35. S.Z. Mohammadi, H. Beitollahi, N. Mohammad Rahimi, Voltammetric determination of epinephrine and uric acid using modified graphene oxide nano sheets paste electrode. J. Anal. Chem. 74, 345–354 (2019)

    Article  Google Scholar 

  36. G. Wei, L. Wang, L. Huo, Y. Zhang, Economical, green and rapid synthesis of CDs-Cu2O/CuO nanotube from the biomass waste reed as sensitive sensing platform for the electrochemical detection of hydrazine. Talanta 209, 120431 (2020)

    Article  CAS  Google Scholar 

  37. H. Beitollahi, M.A. Khalilzadeh, S. Tajik, M. Safaei, K. Zhang, H. Won Jang, M. Shokouhimehr, Recent advances in applications of voltammetric sensors modified with ferrocene and its derivatives. ACS Omega 5, 2049–2059 (2020)

    Article  CAS  Google Scholar 

  38. S.Z. Mohammadi, H. Beitollahi, Z. Dehghan, R. Hosseinzadeh, Electrochemical determination of ascorbic acid, uric acid and folic acid using carbon paste electrode modified with novel synthesized ferrocene derivative and core–shell magnetic nanoparticles in aqueous media. Appl. Organometal. Chem. 32, 4551 (2018)

    Article  Google Scholar 

  39. A.A. Ensafi, M.M. Abarghoui, B. Rezaei, Facile synthesis of Pt-Cu@silicon nanostructure as a new electrocatalyst supported matrix, electrochemical detection of hydrazine and hydrogen peroxide. Electrochim. Acta 190, 199–207 (2016)

    Article  CAS  Google Scholar 

  40. S. Tajik, Z. Dourandish, K. Zhang, H. Beitollahi, Q. Van Le, H. Won Jang, M. Shokouhimehr, Carbon and graphene quantum dots: a review on syntheses, characterization, biological and sensing applications for neurotransmitter determination. RSC Adv. 10, 15406–15429 (2020)

    Article  CAS  Google Scholar 

  41. S.Z. Mohammadi, H. Beitollahi, M. Kaykhaii, N. Mohammadizadeh, A novel electrochemical sensor based on graphene oxide nanosheets and ionic liquid binder for differential pulse voltammetric determination of droxidopa in pharmaceutical and urine samples. Rus. J. Electrochem. 55, 1229–1236 (2019)

    Article  CAS  Google Scholar 

  42. M.R. Ganjali, H. Salimi, S. Tajik, H. Beitollahi, M. Rezapour, B. Larijani, Application of Fe3O4@SiO2/MWCNT film on glassy carbon electrode for the sensitive electroanalysis of levodopa. Int. J. Electrochem. Sci. 12, 5243–5253 (2017)

    Article  CAS  Google Scholar 

  43. S. Esfandiari Baghbamidi, H. Beitollahi, S. Tajik, R. Hosseinzadeh, Voltammetric sensor based on 1-Benzyl-4-ferrocenyl-1H- [1,2,3]-triazole /carbon nanotube modified glassy carbon electrode; detection of hydrochlorothiazide in the presence of propranolol. Int. J. Electrochem. Sci. 11, 10874–10883 (2016)

    Article  Google Scholar 

  44. H. Beitollahi, H. Mahmoudi Moghaddam, S. Tajik, Voltammetric determination of Bisphenol A in water and juice using a lanthanum (III)-doped cobalt (II, III) nanocube modified carbon screen-printed electrode. Anal. Lett. 52, 1432–1444 (2019)

    Article  CAS  Google Scholar 

  45. H. Zhou, L. Chen, S. Li, S. Huang, Y. Sun, Y. Chen, Z. Wang, W. Liu, X. Li, One-step electroreduction preparation of multilayered reduced graphene oxide/gold-palladium nanohybrid as a proficient electrocatalyst for development of sensitive hydrazine sensor. J. Colloid Interface Sci. 566, 473–484 (2020)

    Article  CAS  Google Scholar 

  46. S.Z. Mohammadi, H. Beitollahi, E. BaniAsadi, Electrochemical determination of hydrazine using a ZrO2 nanoparticles-modified carbon paste electrode. Environ. Monit. Assess. 187, 122 (2015)

    Article  Google Scholar 

  47. Y. Dong, C. Duan, J. Zheng, Controlled synthesis of Material of Institute Lavoisier-53(Fe) for amperometric determination of hydrazine. J. Electroanal. Chem. 873, 114407 (2020)

    Article  CAS  Google Scholar 

  48. Y. Ran, Y. Li, X. Cui, T. Lai, L. Yao, R. Zhao, L. Wang, Y. Wang, Sm-doped SnO2 nanoparticles synthesized via solvothermal method as a high-performance formaldehyde sensing material for gas sensors. J. Mater. Sci. 32, 8249–8264 (2021)

    CAS  Google Scholar 

  49. H.-A. Kalaleh, K. Masri, The role of butanol isomers on the performance of ammonia sensors based on polypyrrole prepared by microemulsion polymerization. J. Mater. Sci. 32, 8978–8988 (2021)

    Google Scholar 

  50. C. Wang, D. Ding, X. Jiang, B. Zhou, Electrochemical sensors based on copper-cadmium bimetallic porphyrin coordination polymers with various Cu/Cd ratios. J. Anal. Chem. 76, 772–778 (2021)

    Article  CAS  Google Scholar 

  51. L. Zhao, H. Shang, B. Tian, D. Wang, Y. Liu, W. Wang, Manufacturability and reliability optimization for metallization of SiC piezoresistive pressure sensors. J. Mater. Sci: Mater. Electron. 32, 17637–17644 (2021)

    CAS  Google Scholar 

  52. D. Guettiche, A. Mekki, B. Lilia, T. Fatma-Zohra, A. Boudjellal, Flexible chemiresistive nitrogen oxide sensors based on a nanocomposite of polypyrrole-reduced graphene oxide-functionalized carboxybenzene diazonium salts. J. Mater. Sci: Mater. Electron. 32, 10662–10677 (2021)

    CAS  Google Scholar 

  53. M. Mokni, N. Fourati, C. Zerrouki, A. Othmane, A. Omezzine, A. Bouslama, Review on recent advances in urinary biomarkers based electrochemical sensors for prostate cancer detection, in Advanced Sensors for Biomedical Applications Smart Sensors, Measurement and Instrumentation, vol. 38, ed. by O. Kanoun, N. Derbel (Springer, Cham, 2021)

    Google Scholar 

  54. A.A. Abdul-Hamead, F.M. Othman, M.A. Fakhri, Preparation of MgO–MnO2 nanocomposite particles for cholesterol sensors. J. Mater. Sci: Mater. Electron. 32, 15523–15532 (2021)

    CAS  Google Scholar 

  55. C.T. Thanh, N.H. Binh, P.N. Duc Duoc, V.T. Thu, P.V. Trinh, N.N. Anh, N.V. Tu, N.V. Tuyen, N.V. Quynh, V.C. Tu, B.T. Phuong Thao, P.D. Thang, H. Abe, N.V. Chuc, Electrochemical sensor based on reduced graphene oxide/double-walled carbon nanotubes/octahedral Fe3O4/chitosan composite for glyphosate detection. Bull Environ. Contam. Toxicol. 106, 1017–1023 (2021)

    Article  CAS  Google Scholar 

  56. Y.-W. Bai, G. Shi, J. Gao, F.-N. Shi, MOF decomposed for the preparation of Co3O4/N-doped carbon with excellent microwave absorption. J. Solid State Chem. 288, 121401 (2020)

    Article  CAS  Google Scholar 

  57. P.Y. Chu, C. Tian, Q. Yao, Effects of Co element on the structure, magnetic, and microwave absorption properties of La-Fe-B alloys. J. Supercond. Nov. Magn. 33, 1125–1128 (2020)

    Article  Google Scholar 

  58. S.Z. Mohammadi, H. Beitollahi, H. Allahabadi, T. Rohani, Disposable electrochemical sensor based on modified screen-printed electrode for sensitive cabergoline quantification. J. Electroanal. Chem. 847, 113223 (2019)

    Article  CAS  Google Scholar 

  59. Y. Xu, Y. Peng, X. Zheng, K.D. Dearn, H. Xu, X. Hu, Synthesis and tribological studies of nanoparticle additives for pyrolysis bio-oil formulated as a diesel fuel. Energy 83, 80–88 (2015)

    Article  CAS  Google Scholar 

  60. F.L.S. Carvalho, Y.J.O. Asencios, A.M.B. Rego, E.M. Assaf, Hydrogen production by steam reforming of ethanol over Co3O4/La2O3/CeO2 catalysts synthesized by one-step polymerization method. Appl. Catal. A 483, 52–62 (2014)

    Article  CAS  Google Scholar 

  61. A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edn. (Wiley, New York, 2001), pp. 100–137

    Google Scholar 

  62. S. Liang, T. Zhou, Y. Gao, Q. Wang, Facile synthesis of Co3O4/N-doped carbon nanocomposites as efficient electrode material for sensitive determination of hydrazine. J. Alloys Compd. 816, 152574 (2020)

    Article  CAS  Google Scholar 

  63. J. Li, H. Xie, L. Chen, A sensitive hydrazine electrochemical sensor based on electrodeposition of gold nanoparticles on choline film modified glassy carbon electrode. Sens. Actuator B 153, 239–245 (2011)

    Article  CAS  Google Scholar 

  64. L. Wang, T. Meng, H. Jia, Y. Feng, T. Gong, H. Wang, Y. Zhang, Electrochemical study of hydrazine oxidation by leaf-shaped copper oxide loaded on highly ordered mesoporous carbon composite. J. Colloid Interf. Sci. 549, 98–104 (2019)

    Article  CAS  Google Scholar 

  65. T. Hosseinzadeh Sanatkar, A. Khorshidi, E. Sohouli, J. Janczak, Synthesis, crystal structure, and characterization of two Cu(II) and Ni(II) complexes of a tetradentate N2O2 Schiff base ligand and their application in fabrication of a hydrazine electrochemical sensor. Inorg. Chim. Acta 506, 119537 (2020)

    Article  CAS  Google Scholar 

  66. F. Asadi, S.N. Azizi, S. Ghasemi, Preparation of Ag nanoparticles on nano cobalt-based metal organic framework (ZIF-67) as catalyst support for electrochemical determination of hydrazine. J. Mater. Sci. 30, 5410–5420 (2019)

    CAS  Google Scholar 

  67. Z. Meng, M. Li, X. Liu, Z. Lei, Sensitive electrochemical sensor for hydrazine based on in situ synthesis of Cu3(BTC)2/GO nanocomposite. J. Mater. Sci. 30, 18617–18625 (2019)

    CAS  Google Scholar 

  68. M. Gharani, A. Bahari, S. Ghasemi, Preparation of MoS2-reduced graphene oxide/Au nanohybrid for electrochemical sensing of hydrazine. J. Mater. Sci. 32, 7765–7777 (2021)

    CAS  Google Scholar 

Download references

Acknowledgements

The author is grateful to Islamic Azad University, Kerman Branch, for financial assistance of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamideh Asadollahzadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazari, M., Asadollahzadeh, H., Shahidi, M. et al. An electrochemical nano-sensor for determination of hydrazine using modified electrode by La2O3–Co3O4 nanohybrids and ionic liquid. J Mater Sci: Mater Electron 32, 25258–25268 (2021). https://doi.org/10.1007/s10854-021-06983-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06983-3

Navigation