Skip to main content
Log in

Effect of Aluminum Content on the Tribological Properties of AlxCrTiMo Refractory High-Entropy Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Refractory high-entropy alloys are a new type of alloy exhibiting good properties at high temperatures. In this study, AlxCrTiMo refractory high-entropy alloys were prepared by spark plasma sintering, and the mechanical and tribological properties of the alloys were investigated. The three-dimensional morphology and SEM image of the worn surface showed variation of wear marks, wherein the wear rate of the alloy decreased with increasing temperature, and the main wear mechanism changed from abrasive to adhesive wear. The results of Raman and x-ray diffraction spectroscopies of the phase structure of the oxidized glazed layer on the wear marks showed that the oxide layer on the surface of the Al0.25CrTiMo wear mark at 800°C contained oxides of MoO3 and MoO2. It can be concluded from these results that reduction of the aluminum content of the alloy will promote the formation of Cr and Mo oxides, which is important in the development of high-temperature wear resistance of AlxCrTiMo alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau and S.-Y. Chang, Nanostructured High-Entropy Alloys with Multi-Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(299), p 303. https://doi.org/10.1002/adem.200300567

    Article  CAS  Google Scholar 

  2. J.M. Torralba, P. Alvaredo and A. García-Junceda, High-Entropy Alloys Fabricated via Powder Metallurgy. A Critical Review, Powder Metall., 2019, 62, p 84–114. https://doi.org/10.1080/00325899.2019.1584454

    Article  CAS  Google Scholar 

  3. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw and Lu. Zhao Ping, Microstructures and Properties of Highentropy Alloys, Prog. Mater. Sci., 2014, 61, p 1–93. https://doi.org/10.1016/j.pmatsci.2013.10.001

    Article  CAS  Google Scholar 

  4. O.N. Senkov, D.B. Miracle, K.J. Chaput and J.-P. Couzinie, Development and Exploration of Refractory High Entropy Alloys—A Review, J. Mater. Res., 2018, 19, p 3092–3128. https://doi.org/10.1557/jmr.2018.153

    Article  CAS  Google Scholar 

  5. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang and P.K. Liaw, Refractory High-Entropy Alloys, Intermetallics, 2010, 18, p 1758–1765. https://doi.org/10.1016/j.intermet.2010.05.014

    Article  CAS  Google Scholar 

  6. O.N. Senkov, G.B. Wilks, J.M. Scott and D.B. Miracle, Mechanical Properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 Refractory High Entropy Alloys, Intermetallics, 2011, 19, p 698–706. https://doi.org/10.1016/j.intermet.2011.01.004

    Article  CAS  Google Scholar 

  7. B. Gorr, F. Müller, M. Azim, H.-J. Christ, T. Müller, H. Chen, A. Kauffmann and M. Heilmaier, High-Temperature Oxidation Behavior of Refractory High-Entropy Alloys: Effect of Alloy Composition, Oxid. Met., 2017, 88, p 339–349. https://doi.org/10.1007/s11085-016-9696-y

    Article  CAS  Google Scholar 

  8. F. Müller, B. Gorr, H.-J. Christ, J. Müller, B. Butz, H. Chen, A. Kauffmann and M. Heilmaier, On the Oxidation Mechanism of Refractory High Entropy Alloys, Corros. Sci., 2019, 159, p 108161. https://doi.org/10.1016/j.corsci.2019.108161

    Article  CAS  Google Scholar 

  9. B. Gorr, F. Müller, S. Schellert, H.-J. Christ, H. Chen, A. Kauffmann and M. Heilmaier, A New Strategy to Intrinsically Protect Refractory Metal Based Alloys at Ultra High Temperatures, Corros. Sci., 2020, 166, p 108475. https://doi.org/10.1016/j.corsci.2020.108475

    Article  CAS  Google Scholar 

  10. A. Poulia, E. Georgatis, A. Lekatou and A.E. Karantzalis, Microstructure and Wear Behavior of a Refractory High Entropy Alloy, Int. J. Refract. Met. Hard Mater., 2016, 57, p 50–63. https://doi.org/10.1016/j.ijrmhm.2016.02.006

    Article  CAS  Google Scholar 

  11. C. Mathiou, A. Poulia, E. Georgatis and A.E. Karantzalis, Microstructural Features and Dry-Sliding Wear Response of MoTaNbZrTi High Entropy Alloy, Mater. Chem. Phys., 2018, 210, p 126–135. https://doi.org/10.1016/j.matchemphys.2017.08.036

    Article  CAS  Google Scholar 

  12. W. Steurer, Single-Phase High-Entropy Alloys – A Critical Update, Mater. Charact., 2020, 162, p 110179. https://doi.org/10.1016/j.matchar.2020.110179

    Article  CAS  Google Scholar 

  13. J. Menghani, A. Vyas, P. Patel, H. Natu and S. More, Wear, Erosion and Corrosion Behavior of Laser Cladded High Entropy Alloy Coatings – A Review, Mater. Today Proc., 2020 https://doi.org/10.1016/j.matpr.2020.08.763

    Article  Google Scholar 

  14. D.B. Miracle and O.N. Senkov, A Critical Review of High Entropy Alloys and Related Concepts, Acta Mater., 2017, 122, p 448–511. https://doi.org/10.1016/j.actamat.2016.08.081

    Article  CAS  Google Scholar 

  15. J. Chen, X. Zhou, W. Wang, B. Liu, Y. Lv, W. Yang, D. Xu and Y. Liu, A Review on Fundamental of High Entropy Alloys with Promising High temperature Properties, J. Alloy. Compd., 2018, 760, p 15–30. https://doi.org/10.1016/j.jallcom.2018.05.067

    Article  CAS  Google Scholar 

  16. S. Alvi and F. Akhtar, High Temperature Tribology of CuMoTaWV High Entropy Alloy, Wear, 2019, 426, p 412–419. https://doi.org/10.1016/j.wear.2018.12.085

    Article  CAS  Google Scholar 

  17. Y. Guo, H. Wang and Q. Liu, Microstructure Evolution and Strengthening Mechanism of Laser-Cladding MoFexCrTiWAlNby Refractory High-Entropy Alloy Coatings, J. Alloy Compd., 2020, 834, 155147. https://doi.org/10.1016/j.jallcom.2020.155147

    Article  CAS  Google Scholar 

  18. G. Deng, A.K. Tieu, L. Su, P. Wang, L. Wang, X. Lan, S. Cui and H. Zhu, Investigation into Reciprocating Dry Sliding Friction and Wear Properties of bulk CoCrFeNiMo High Entropy Alloys Fabricated by Spark Plasma Sintering and Subsequent Cold Rolling Processes: Role of Mo Element Concentration, Wear, 2020, 460, p 203440. https://doi.org/10.1016/j.wear.2020.203440

    Article  CAS  Google Scholar 

  19. S. Yadav, K. Biswas and A. Kumar, Spark Plasma Sintering of High Entropy Alloys, Spark Plasma Sinter. Mater., 2019 https://doi.org/10.1007/978-3-030-05327-7_19

    Article  Google Scholar 

  20. J. Han, B. Su, J. Lu, J. Meng, A. Zhang and Y. Wu, Preparation of MoNbTaW Refractory High Entropy Alloy Powders by Pressureless Spark Plasma Sintering: Crystal Structure and Phase Evolution, Intermetallics, 2020, 123, 106832. https://doi.org/10.1016/j.intermet.2020.106832

    Article  CAS  Google Scholar 

  21. C. Zhu, Z. Li, C. Hong, P. Dai and J. Chen, Microstructure and Mechanical Properties of the TiZrNbMoTa Refractory High-Entropy Alloy Produced by Mechanical Alloying and Spark PLASMA sintering, Int. J. Refract Met. Hard Mater., 2020, 93, 105357. https://doi.org/10.1016/j.ijrmhm.2020.105357

    Article  CAS  Google Scholar 

  22. Z. Guo, A. Zhang, J. Han and J. Meng, Effect of Si Additions on Microstructure and Mechanical Properties of Refractory NbTaWMo High-Entropy Alloys, J. Mater. Sci., 2019, 54, p 5844–5851. https://doi.org/10.1007/s10853-018-03280-z

    Article  CAS  Google Scholar 

  23. R. Zhang, J. Meng, J. Han, T. Kelimu and R. Zhang, Oxidation Resistance Properties of Refractory High-Entropy Alloys with Varied AlxCrTiMo Content, J. Mater. Sci., 2021, 56, p 3551–3561. https://doi.org/10.1007/s10853-020-05480-y

    Article  CAS  Google Scholar 

  24. C.-M. Lin, C.-C. Juan, C.-H. Chang, C.-W. Tsai and J.-W. Yeh, Effect of Al Addition on Mechanical Properties and Microstructure of Refractory AlxHfNbTaTiZr Alloys, J. Alloy Compd., 2015, 624, p 100–107. https://doi.org/10.1016/j.jallcom.2014.11.064

    Article  CAS  Google Scholar 

  25. A.J. Zhang, J.S. Han, J.H. Meng, B. Su and P.D. Li, Rapid Preparation of AlCoCrFeNi High Entropy Alloy by Spark Plasma Sintering from Elemental Powder Mixture, Mater. Lett., 2016, 181, p 82–85. https://doi.org/10.1016/j.matlet.2016.06.014

    Article  CAS  Google Scholar 

  26. J. Joseph, N. Haghdadi, K. Shamlaye, P. Hodgson, M. Barnett and D. Fabijanic, The Sliding Wear Behaviour of CoCrFeMnNi and AlxCoCrFeNi High Entropy Alloys at Elevated Temperatures, Wear, 2019, 428, p 32–44. https://doi.org/10.1016/j.wear.2019.03.002

    Article  CAS  Google Scholar 

  27. K. Dohda, C. Boher, F. Rezai-Aria and N. Mahayotsanun, Tribology in Metal Forming at Elevated Temperatures, Friction, 2015, 3, p 1–27. https://doi.org/10.1007/s40544-015-0077-3

    Article  CAS  Google Scholar 

  28. F.A. Essa, Q.X. Zhang, X.J. Huang, M.K.A. Ali, A. Elagouz and M.A.A. Abdelkareem, Effects of ZnO and MoS2 Solid Lubricants on Mechanical and Tribological Properties of M50-Steel-Based Composites at High Temperatures: Experimental and Simulation Study, Tribol. Lett., 2017, 65, p 97. https://doi.org/10.1007/s11249-017-0880-2

    Article  CAS  Google Scholar 

  29. C. Huang, B. Zou, P. Guo, Y. Liu, C. Huang and J. Wang, Sliding Behavior and Wear Mechanism of Iron and Cobalt-Based High-Temperature Alloys Against WC and SiC Balls, Int. J. Refract. Met. Hard Mater., 2016, 59, p 40–55. https://doi.org/10.1016/j.ijrmhm.2016.05.007

    Article  CAS  Google Scholar 

  30. A. Zhang, J. Han, B. Su, P. Li and J. Meng, Microstructure, Mechanical Properties and Tribological Performance of CoCrFeNi High Entropy Alloy Matrix Self-Lubricating Composite, Mater. Des., 2017, 114, p 253–263. https://doi.org/10.1016/j.matdes.2016.11.072

    Article  CAS  Google Scholar 

  31. M. Pole, M. Sadeghilaridjani, J. Shittu, A. Ayyagari and S. Mukherjee, High Temperature Wear Behavior of Refractory High Entropy Alloys Based on 4-5-6 Elemental Palette, J. Alloy Compd., 2020, 843, 156004. https://doi.org/10.1016/j.jallcom.2020.156004

    Article  CAS  Google Scholar 

  32. F. Müller, B. Bronislava Gorr, H.-J. Christ, J. Müller, B. Butz, H. Chen, A. Kauffmann and M. Heilmaier, On the Oxidation Mechanism of Refractory High Entropy Alloys, Corros. Sci., 2019, 159, 108161. https://doi.org/10.1016/j.corsci.2019.108161

    Article  CAS  Google Scholar 

  33. N. Becker and R. Dronskowski, A First-Principles Study on New High-Pressure Metastable Polymorphs of MoO2, J. Solid State Chem., 2016, 237, p 404–410. https://doi.org/10.1016/j.jssc.2016.03.002

    Article  CAS  Google Scholar 

  34. X. Yang, S. Dong, J. Zeng, X. Zhou, J. Jiang, L. Deng and X. Cao, Sliding Wear Characteristics of Plasma-Sprayed Cr2O3 Coatings with Incorporation of Metals and Ceramics, Ceram. Int., 2019, 45, p 20243–20250. https://doi.org/10.1016/j.ceramint.2019.06.297

    Article  CAS  Google Scholar 

  35. Z. Guo, A. Zhang, J. Han and J. Meng, Microstructure, Mechanical and Tribological Properties of CoCrFeNiMn High Entropy Alloy Matrix Composites with Addition of Cr3C2, Tribol. Int., 2020, 151, 106436. https://doi.org/10.1016/j.triboint.2020.106436

    Article  CAS  Google Scholar 

  36. E.A. Gulbransen, K.F. Andrew and F.A. Brassart, Oxidation of Molybdenum 550°C to 1700°C, J. Electrochem. Soc., 1963, 110, p 952–959. https://doi.org/10.1016/0042-207X(64)91551-9

    Article  CAS  Google Scholar 

  37. X.F. Lu and H.M. Wang, Microstructural Characterization and Dry Sliding Wear Resistance of MoO2-Strengthened γ/NiMo Alloys with Different Primary Phases, Mater. Charact., 2009, 60, p 834–842. https://doi.org/10.1016/j.matchar.2009.01.016

    Article  CAS  Google Scholar 

  38. H.-S. Ahn, I.-W. Lyo and D.-S. Lim, Influence of Molybdenum Composition in Chromium Oxide-Based Coatings on their Tribological Behavior, Surf. Coat. Technol., 2000, 133, p 351–361. https://doi.org/10.1016/S0257-8972(00)00892-6

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Gansu Province, China (Grant No. 20JR5RA560) and the Project National United Engineering Laboratory for Advanced Bearing Tribology, Henan University of Science and Technology, China (Grant No. 201907).

Author information

Authors and Affiliations

Authors

Contributions

RZ involved in conceptualization, formal analysis, data curation, investigation, writing—original draft, and writing—review & editing. KT participated in writing—review & editing and formal analysis. AZ involved in funding acquisition, investigation, and methodology. JM participated in formal analysis, methodology, and project administration. J H: participated in software, supervision, and validation.

Corresponding authors

Correspondence to Kelimu Tulugan or Jiesheng Han.

Ethics declarations

Conflict of interest

All authors of this manuscript have directly participated in planning, execution, and analysis of this study. The contents of this manuscript have not been copyrighted or published previously. The contents of this manuscript are not now under consideration for publication elsewhere. The contents of this manuscript will not be copyrighted, submitted, or published elsewhere while acceptance by Journal of Materials Science is under consideration. There are no directly related manuscripts or abstracts, published or unpublished, by any authors of this manuscript. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Tulugan, K., Zhang, A. et al. Effect of Aluminum Content on the Tribological Properties of AlxCrTiMo Refractory High-Entropy Alloys. J. of Materi Eng and Perform 31, 984–993 (2022). https://doi.org/10.1007/s11665-021-06243-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06243-9

Keywords

Navigation