Skip to main content

Advertisement

Log in

Fast grain-boundary ionic conduction in multiphase aggregates as revealed by electrical conductivity measurements

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Interpretation of deep earth structures from electromagnetic data requires the constraint from the electrical conductivity of various minerals experimentally measured at high temperature and high pressure. However, the combination of these measured conductivities of different minerals always fails to match the conductivities of the multiphase rocks under in-situ conditions. To investigate the effect of ion segregation at grain boundaries on bulk conductivity, we measured the electrical conductivities of quartz, albite, and orthoclase single-phase aggregates, as well as those of two multiphase aggregates made up of the three minerals at both ambient pressure and 1 GPa over a range of temperatures. The electrical conductivities of the multiphase aggregates were an order of magnitude higher and the activation enthalpies were lower than those of the three single-phase aggregates. A significant dependence of conductivity on grain size was identified in the multiphase aggregates but not in the single-phase aggregates. The interdiffusion of alkali ions between orthoclase and albite initiated grain boundary ionic conduction, which enhanced the bulk conductivity of the multiphase aggregates to 20 S/m at 1073 K. This conduction mechanism might explain the electrical conductivity anomalies of the active shear zone in the crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

adapted from the model of Ten Grotenhuis et al. (2004). MA1 (red solid line) and MA2 (blue solid line) are the best fitting curves based on MA1-G and MA1-P (red solid line), MA2-G, and MA2-P (blue dots), respectively, at 1 GPa and 1073 K. The grain size of MA1-G and MA2-G was set at 200 µm, while that of MA1-P and MA1-P was set at 20 µm. The orange shaded area denotes the conductivity of the middle crust under the Songpan-Ganzi block, in Tibet (Wang et al. 2014c)

Similar content being viewed by others

References

  • Adam J, Green TH (1994) The effects of pressure and temperature on the partitioning of Ti, Sr and REE between amphibole, clinopyroxene and basanitic melts. Chem Geol 117:219–233

    Article  Google Scholar 

  • Aines RD, Rossman GR (1984) Water in minerals? A peak in the infrared. J Geophys Res Solid Earth 89:4059–4071

    Article  Google Scholar 

  • Amulele GM, Lanati AW, Clark SM (2019) Electrical conductivity studies on silica phases and the effects of phase transformation. Ame Miner 104:1800–1805. https://doi.org/10.2138/am-2019-7120

    Article  Google Scholar 

  • Aranovich LY, Makhluf AR, Manning CE, Newton RC (2014) Dehydration melting and the relationship between granites and granulites. Precambrian Res 253:26–37

    Article  Google Scholar 

  • Aubaud C, Hauri EH, Hirschmann MM (2004) Hydrogen partition coefficients between nominally anhydrous minerals and basaltic melts. Geophys Res Lett 31:1–4. https://doi.org/10.1029/2004GL021341

    Article  Google Scholar 

  • Bagdassarov NS, Delépine N (2004) α–β inversion in quartz from low frequency electrical impedance spectroscopy. J Phys Chem Solids 65:1517–1526

    Article  Google Scholar 

  • Bai D, Unsworth MJ, Meju MA, Ma X, Teng J, Kong X, Sun Y, Sun J, Wang L, Jiang C, Zhao C, Xiao P, Liu M (2010) Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nature Geosci 3:358–362. https://doi.org/10.1038/ngeo830

    Article  Google Scholar 

  • Campone P, Magliocco M, Spinolo G, Vedda A (1995) Ionic transport in crystalline SiO2: THE role of alkali-metal ions and hydrogen impurities. Phys Rev B 52:15903–15908. https://doi.org/10.1103/PhysRevB.52.15903

    Article  Google Scholar 

  • Cherniak DJ (2003) REE diffusion in feldspar. Chem Geol 193:25–41. https://doi.org/10.1016/S0009-2541(02)00246-2

    Article  Google Scholar 

  • Choy TC (2015) Effective medium theory: principles and applications. Oxford University Press, Oxford

    Google Scholar 

  • Costa F, Chakraborty S (2008) The effect of water on Si and O diffusion rates in olivine and implications for transport properties and processes in the upper mantle. Phys Earth Planet Inter 166:11–29. https://doi.org/10.1016/j.pepi.2007.10.006

    Article  Google Scholar 

  • Dai L, Karato S (2020) Electrical conductivity of Ti-bearing hydrous olivine aggregates at high temperature and high pressure. Solid Earth, J Geophys Res. https://doi.org/10.1029/2020JB020309

    Book  Google Scholar 

  • DeLucia MS, Murphy BS, Marshak S, Egbert GD (2019) The Missouri high-conductivity belt, revealed by magnetotelluric imaging: evidence of a trans-lithospheric shear zone beneath the Ozark Plateau, Midcontinent USA? Tectonophys 753:111–123. https://doi.org/10.1016/j.tecto.2019.01.011

    Article  Google Scholar 

  • Demouchy S (2010) Diffusion of hydrogen in olivine grain boundaries and implications for the survival of water-rich zones in the Earth’s mantle. Earth Planet Sci Lett 295:305–313

    Article  Google Scholar 

  • Dohmen R (2008) A new experimental thin film approach to study mobility and partitioning of elements in grain boundaries: Fe-Mg exchange between olivines mediated by transport through an inert grain boundary. Am Miner 93:863–874. https://doi.org/10.2138/am.2008.2671

    Article  Google Scholar 

  • Dohmen R, Milke R (2010) Diffusion in polycrystalline materials: grain boundaries, mathematical models, and experimental data. Rev Miner Geochem 72:921–970. https://doi.org/10.2138/rmg.2010.72.21

    Article  Google Scholar 

  • Ducea MN, Park SK (2000) Enhanced mantle conductivity from sulfide minerals, southern Sierra Nevada, California. Geophys Res Lett 27:2405–2408. https://doi.org/10.1029/2000GL011565

    Article  Google Scholar 

  • Farver JR, Yund RA (1996) Volume and grain boundary diffusion of calcium in natural and hot-pressed calcite aggregates. Contrib Mineral Petrol 123:77–91. https://doi.org/10.1007/s004100050144

    Article  Google Scholar 

  • Farver JR, Yund RA, Rubie DC (1994) Magnesium grain boundary diffusion in forsterite aggregates at 1000°–1300°C and 0.1 MPa to 10 GPa. J Geophys Res Solid Earth 99:19809–19819. https://doi.org/10.1029/94JB01250

    Article  Google Scholar 

  • Fei H, Druzhbin D, Katsura T (2020) The effect of water on ionic conductivity in olivine. J Geophys Res Solid Earth. https://doi.org/10.1029/2019JB019313

    Article  Google Scholar 

  • Gasc J, Brunet F, Bagdassarov N, Morales-Flórez V (2011) Electrical conductivity of polycrystalline Mg(OH)2 at 2 GPa: effect of grain boundary hydration–dehydration. Phys Chem Minerals 38:543–556. https://doi.org/10.1007/s00269-011-0426-3

    Article  Google Scholar 

  • Giletti BJ, Shanahan TM (1997) Alkali diffusion in plagioclase feldspar. Chem Geol 139:3–20. https://doi.org/10.1016/S0009-2541(97)00026-0

    Article  Google Scholar 

  • Goncalves P, Oliot E, Marquer D, Connolly J (2012) Role of chemical processes on shear zone formation: an example from the Grimsel metagranodiorite (Aar massif, Central Alps). J Metamorph Geol 30:1–20. https://doi.org/10.1111/j.1525-1314.2012.00991.x

    Article  Google Scholar 

  • Grant K, Ingrin J, Lorand JP, Dumas P (2007) Water partitioning between mantle minerals from peridotite xenoliths. Contrib Mineral Petrol 154:15–34. https://doi.org/10.1007/s00410-006-0177-1

    Article  Google Scholar 

  • Guo X, Yoshino T, Shimojuku A (2015) Electrical conductivity of albite-(quartz)-water and albite-water-NaCl systems and its implication to the high conductivity anomalies in the continental crust. Earth Planet Sci Lett 412:1–9

    Article  Google Scholar 

  • Guo X, Zhang L, Su X, Mao Z, Gao X-Y, Yang X, Ni H (2018) Melting inside the tibetan crust? Constraint from electrical conductivity of peraluminous granitic melt. Geophys Res Lett 45:3906–3913. https://doi.org/10.1029/2018GL077804

    Article  Google Scholar 

  • Hacker BR, Gnos E, Ratschbacher L, Grove M, McWilliams M, Sobolev S, Wan J, Wu Z (2000) Hot and dry deep crustal xenoliths from tibet. Science 287:2463–2466. https://doi.org/10.1126/science.287.5462.2463

    Article  Google Scholar 

  • Han K, Clark SM (2021) Review of calculating the electrical conductivity of mineral aggregates from constituent conductivities. Solid Earth Sci 6:111–128. https://doi.org/10.1016/j.sesci.2021.02.003

    Article  Google Scholar 

  • Hashin Z, Shtrikman S (1961) Note on a variational approach to the theory of composite elastic materials. J Franklin Inst 271:336–341

    Article  Google Scholar 

  • Hiraga T, Anderson IM, Kohlstedt DL (2004) Grain boundaries as reservoirs of incompatible elements in the Earth’s mantle. Nature 427:699. https://doi.org/10.1038/nature02259

    Article  Google Scholar 

  • Hu H, Li H, Dai L, Shan S, Zhu C (2011) Electrical conductivity of albite at high temperatures and high pressures. Am Miner 96:1821–1827

    Article  Google Scholar 

  • Hu H, Li H, Dai L, Shan S, Zhu C (2013) Electrical conductivity of alkali feldspar solid solutions at high temperatures and high pressures. Phys Chem Miner 40:51–62

    Article  Google Scholar 

  • Hu H, Dai L, Li H, Jiang J, Hui K (2014) Electrical conductivity of K-feldspar at high temperature and high pressure. Mineral Petrol 108:609–618

    Article  Google Scholar 

  • Huang W-L, Wyllie PJ (1975) Melting reactions in the system NaAlSi3O8-KAlSi3O8-SiO2 to 35 kilobars, dry and with excess water. J Geol 83:737–748. https://doi.org/10.1086/628165

    Article  Google Scholar 

  • Jain H, Nowick AS (1982) Electrical conductivity of synthetic and natural quartz crystals. J Appl Phys 53:477–484

    Article  Google Scholar 

  • Johannes W, Holtz F (2012) Petrogenesis and experimental petrology of granitic rocks. Springer Science & Business Media, Berlin, pp 35–38

    Google Scholar 

  • Johnson EA, Rossman GR (2004) A survey of hydrous species and concentrations in igneous feldspars. Am Miner 89:586–600. https://doi.org/10.2138/am-2004-0413

    Article  Google Scholar 

  • Jones AG (2016) Proton conduction and hydrogen diffusion in olivine: an attempt to reconcile laboratory and field observations and implications for the role of grain boundary diffusion in enhancing conductivity. Phys Chem Miner 43:237–265

    Article  Google Scholar 

  • Jones AG, Fullea J, Evans RL, Muller MR (2012) Water in cratonic lithosphere: calibrating laboratory-determined models of electrical conductivity of mantle minerals using geophysical and petrological observations. Geochem Geophys Geosyst 13:1–27

    Article  Google Scholar 

  • Karato S (2019) Some remarks on hydrogen-assisted electrical conductivity in olivine and other minerals. Prog Earth Planet Sci 6:55. https://doi.org/10.1186/s40645-019-0301-2

    Article  Google Scholar 

  • Karato S, Wang D (2013) Electrical conductivity of minerals and rocks. Physics and chemistry of the deep earth, 1st edn. John Wiley & Sons, Hoboken, pp 145–182

    Chapter  Google Scholar 

  • Keller LM, Hauzenberger CA, Abart R (2007) Diffusion along interphase boundaries and its effect on retrograde zoning patterns of metamorphic minerals. Contrib Mineral Petrol 154:205–216. https://doi.org/10.1007/s00410-007-0188-6

    Article  Google Scholar 

  • Keppler H, Rauch M (2000) Water solubility in nominally anhydrous minerals measured by FTIR and 1H MAS NMR: the effect of sample preparation. Phys Chem Miner 27:371–376. https://doi.org/10.1007/s002699900070

    Article  Google Scholar 

  • Khan A, Shankland TJ (2012) A geophysical perspective on mantle water content and melting: Inverting electromagnetic sounding data using laboratory-based electrical conductivity profiles. Earth Planet Sci Lett 317:27–43

    Article  Google Scholar 

  • Laumonier M, Farla R, Frost DJ, Katsura T, Marquardt K, Bouvier A-S, Baumgartner LP (2017) Experimental determination of melt interconnectivity and electrical conductivity in the upper mantle. Earth Planet Sci Lett 463:286–297

    Article  Google Scholar 

  • Li H, Xue L, Brodsky EE, Mori JJ, Fulton PM, Wang H, Kano Y, Yun K, Harris RN, Gong Z, Li C, Si J, Sun Z, Pei J, Zheng Y, Xu Z (2015) Long-term temperature records following the Mw7.9 Wenchuan (China) earthquake are consistent with low friction. Geol 43:163–166. https://doi.org/10.1130/G35515.1

    Article  Google Scholar 

  • Li Y, Jiang H, Yang X (2017) Fluorine follows water: Effect on electrical conductivity of silicate minerals by experimental constraints from phlogopite. Geochim Cosmochim Acta 217:16–27. https://doi.org/10.1016/j.gca.2017.08.020

    Article  Google Scholar 

  • Li P, Guo X, Chen S, Wang C, Yang J, Zhou X (2018) Electrical conductivity of the plagioclase–NaCl–water system and its implication for the high conductivity anomalies in the mid-lower crust of Tibet Plateau. Contrib Mineral Petrol 173:16. https://doi.org/10.1007/s00410-018-1442-9

    Article  Google Scholar 

  • Maury R (1968) Conductibilite electrique des tectosilicates. I. Methode Et Resultats Experimentaux Bull Minér 91:267–278

    Google Scholar 

  • Mosenfelder JL, Rossman GR, Johnson EA (2015) Hydrous species in feldspars: a reassessment based on FTIR and SIMS. Am Miner 100:1209–1221

    Article  Google Scholar 

  • Ni H, Keppler H, Manthilake M, Katsura T (2011) Electrical conductivity of dry and hydrous NaAlSi 3 O 8 glasses and liquids at high pressures. Contrib Mineral Petrol 162:501–513

    Article  Google Scholar 

  • Nover G (2005) Electrical properties of crustal and mantle rocks–a review of laboratory measurements and their explanation. Surv Geophys 26:593–651

    Article  Google Scholar 

  • Özaydın S, Selway K (2020) MATE: an analysis tool for the interpretation of magnetotelluric models of the mantle. Geochem Geophys Geosyst. https://doi.org/10.1029/2020GC009126

    Article  Google Scholar 

  • Poe BT, Romano C, Nestola F, Smyth JR (2010) Electrical conductivity anisotropy of dry and hydrous olivine at 8 GPa. Phys Earth Planet Inter 181:103–111

    Article  Google Scholar 

  • Pommier A, Kohlstedt DL, Hansen LN, Mackwell S, Tasaka M, Heidelbach F, Leinenweber K (2018) Transport properties of olivine grain boundaries from electrical conductivity experiments. Contrib Mineral Petrol 173:41. https://doi.org/10.1007/s00410-018-1468-z

    Article  Google Scholar 

  • Roberts JJ, Tyburczy JA (1991) Frequency dependent electrical properties of polycrystalline olivine compacts. J Geophys Res Solid Earth 96:16205–16222

    Article  Google Scholar 

  • Robertson K, Heinson G, Thiel S (2016) Lithospheric reworking at the Proterozoic–Phanerozoic transition of Australia imaged using AusLAMP Magnetotelluric data. Earth Planet Sci Lett 452:27–35. https://doi.org/10.1016/j.epsl.2016.07.036

    Article  Google Scholar 

  • Rossman GR (2006) Analytical methods for measuring water in nominally anhydrous minerals. Rev Miner Geochem 62:1–28. https://doi.org/10.2138/rmg.2006.62.1

    Article  Google Scholar 

  • Searle MP, Elliott JR, Phillips RJ, Chung S-L (2011) Crustal–lithospheric structure and continental extrusion of Tibet. J Geol Soc 168:633–672

    Article  Google Scholar 

  • Selway K (2018) Electrical discontinuities in the continental lithosphere imaged with magnetotellurics. In: Lithospheric discontinuities. Am Geophys Union (AGU), pp 89–109

  • Sol S, Meltzer A, Bürgmann R, van der Hilst RD, King R, Chen Z, Koons PO, Lev E, Liu YP, Zeitler PK, Zhang X, Zhang J, Zurek B (2007) Geodynamics of the southeastern Tibetan Plateau from seismic anisotropy and geodesy. Geology 35:563–566. https://doi.org/10.1130/G23408A.1

    Article  Google Scholar 

  • Ten Grotenhuis SM, Drury MR, Peach CJ, Spiers CJ (2004) Electrical properties of fine-grained olivine: evidence for grain boundary transport. J Geophys Res Solid Earth 109:1–9

    Google Scholar 

  • Thomas SM, Koch-Müller M, Reichart P, Rhede D, Thomas R, Wirth R, Matsyuk S (2009) IR calibrations for water determination in olivine, r-GeO2, and SiO2 polymorphs. Phys Chem Miner 36:489–509

    Article  Google Scholar 

  • Tuttle OF, Bowen NL (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8–KAlSi3O8–SiO2–H2O. In: Geological society of America memoirs. Geol Soc Am, pp 1–146

  • Unsworth M, Wenbo W, Jones AG, Li S, Bedrosian P, Booker J, Sheng J, Ming D, Handong T (2004) Crustal and upper mantle structure of northern Tibet imaged with magnetotelluric data. J Geophys Res Solid Earth 109:B02403. https://doi.org/10.1029/2002JB002305

    Article  Google Scholar 

  • Waff HS (1974) Theoretical considerations of electrical conductivity in a partially molten mantle and implications for geothermometry. J Geophys Res 79:4003–4010

    Article  Google Scholar 

  • Wang D, Li H, Yi L, Matsuzaki T, Yoshino T (2010) Anisotropy of synthetic quartz electrical conductivity at high pressure and temperature. J Geophys Res Solid Earth 115:1–10

    Google Scholar 

  • Wang D, Karato S, Jiang Z (2013) An experimental study of the influence of graphite on the electrical conductivity of olivine aggregates. Geophys Res Lett 40:2028–2032. https://doi.org/10.1002/grl.50471

    Article  Google Scholar 

  • Wang D, Yu Y, Zhou Y (2014a) Electrical conductivity anisotropy in alkali feldspar at high temperature and pressure. High Pressure Res 34:297–308

    Article  Google Scholar 

  • Wang Q, Bagdassarov N, Xia Q-K, Zhu B (2014b) Water contents and electrical conductivity of peridotite xenoliths from the North China Craton: implications for water distribution in the upper mantle. Lithos 189:105–126. https://doi.org/10.1016/j.lithos.2013.08.005

    Article  Google Scholar 

  • Wang X, Zhang G, Fang H, Luo W, Zhang W, Zhong Q, Cai X, Luo H (2014c) Crust and upper mantle resistivity structure at middle section of Longmenshan, eastern Tibetan plateau. Tectonophysics 619:143–148. https://doi.org/10.1016/j.tecto.2013.09.011

    Article  Google Scholar 

  • Watson HC, Roberts JJ, Tyburczy JA (2010) Effect of conductive impurities on electrical conductivity in polycrystalline olivine. Geophys Res Lett 37:1–6. https://doi.org/10.1029/2009GL041566

    Article  Google Scholar 

  • Xu L, Rondenay S, van der Hilst RD (2007) Structure of the crust beneath the southeastern Tibetan Plateau from teleseismic receiver functions. Phys Earth Planet Inter 165:176–193. https://doi.org/10.1016/j.pepi.2007.09.002

    Article  Google Scholar 

  • Xu M, Zhu C, Rao S, Hu S (2011) Difference of thermal structure between eastern edge of Tibet Plateau and weasten Sichuan Basin. Sci Geol Sin 46:203–212

    Google Scholar 

  • Yang X, Heidelbach F (2012) Grain size effect on the electrical conductivity of clinopyroxene. Contrib Mineral Petrol 163:939–947

    Article  Google Scholar 

  • Yang X, Keppler H, McCammon C, Ni H (2012) Electrical conductivity of orthopyroxene and plagioclase in the lower crust. Contrib Mineral Petrol 163:33–48

    Article  Google Scholar 

  • Yoshino T, Noritake F (2011) Unstable graphite films on grain boundaries in crustal rocks. Earth Planet Sci Lett 306:186–192. https://doi.org/10.1016/j.epsl.2011.04.003

    Article  Google Scholar 

  • Yoshino T, Matsuzaki T, Shatskiy A, Katsura T (2009) The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle. Earth Planet Sci Lett 288:291–300

    Article  Google Scholar 

  • Zhang Y, Cherniak DJ (2010) Diffusion in minerals and melts: introduction. Rev Miner Geochem 72:1–4. https://doi.org/10.2138/rmg.2010.72.1

    Article  Google Scholar 

  • Zhang Z, Wang Y, Chen Y, Bai Z, Tian X, Li Q (2009) Crustal structure across Longmenshan fault belt from passive source seismic profiling. Geophys Res Lett 36:L17310. https://doi.org/10.1029/2009GL039580

    Article  Google Scholar 

  • Zhang B, Shan S, Wu X (2016) Modeling H, Na, and K diffusion in plagioclase feldspar by relating point defect parameters to bulk properties. Phys Chem Miner 43:151–159. https://doi.org/10.1007/s00269-015-0782-5

    Article  Google Scholar 

  • Zhang B, Li B, Zhao C, Yang X (2019) Large effect of water on Fe–Mg interdiffusion in garnet. Earth Planet Sci Lett 505:20–29. https://doi.org/10.1016/j.epsl.2018.10.015

    Article  Google Scholar 

  • Zi J-W, Cawood PA, Fan W-M, Eric T, Wang Y-J, McCuaig TC, Peng T-P (2013) Late permian-triassic magmatic evolution in the jinshajiang orogenic belt, Sw China and implications for orogenic processes following closure of the paleo-tethys. Am J Sci 313:81–112. https://doi.org/10.2475/02.2013.02

    Article  Google Scholar 

Download references

Acknowledgements

We would like to sincerely thank Dr. Xiong Wang, Jiayuan Bai, Prof. Christopher Ling and Dr. Qingbo, Xia for the help in conducting experiments, as well as the input from Dr Richard Flood. We are grateful to Prof. Martyn Unsworth for the constructive suggestions. This work is supported by the Natural Science Foundation of China (91755215, 42072051), CAS “Light of West China” program (Y9CR026 to X. G.), Australian Research Council Discovery Project DP160103502 and Open Research Program GPMR201801 funded by State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan. Kui Han would like to thank Macquarie University for an International Research Training Scholarship (iRTP) and Chengdu University of Technology for starting-up grant (10912-KYQD2020-08600) and (80000-2020ZF11409). This work is indebted to the Australian Research Council (ARC) Centre of Excellence for Core to Crust Fluid System for facilitating the research work. All of the data reported in this paper is available through EarthChem Library (https://doi.org/10.26022/IEDA/111815).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinzhuan Guo.

Additional information

Communicated by Hans Keppler.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1185 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, K., Guo, X., Zhang, J. et al. Fast grain-boundary ionic conduction in multiphase aggregates as revealed by electrical conductivity measurements. Contrib Mineral Petrol 176, 80 (2021). https://doi.org/10.1007/s00410-021-01841-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-021-01841-1

Keywords

Navigation