Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MULTIPLE MYELOMA, GAMMOPATHIES

Circulating cytokines present in multiple myeloma patients inhibit the osteoblastic differentiation of adipose stem cells

Abstract

Myeloma is characterized by bone lesions, which are related to both an increased osteoclast activity and a defect in the differentiation of medullary mesenchymal stem cells (MSCs) into osteoblasts. Outside the medullary environment, adipocyte-derived MSCs (ASCs) could represent a source of functional osteoblasts. However, we recently found a defect in the osteoblastic differentiation of ASCs from myeloma patients (MM-ASCs). We examined the effects of plasma from myeloma patients at diagnosis (MM-plasmas) and in complete remission (CR-plasmas) and from healthy donors on the osteoblastic differentiation of healthy donor-derived ASCs (HD-ASCs). Osteoblastogenesis in HD-ASCs was suppressed by MM-plasmas. Seven cytokines (ANG1, ENA-78, EGF, PDGF-AA/AB/BB, and TARC) were increased in MM-plasmas and separately inhibited the osteoblastic differentiation of HD-ASCs. Comparison of MM-ASCs and HD-ASCs by RNA sequencing showed that two master genes characterizing adipocyte differentiation, CD36 and PPARγ, were upregulated in MM-ASCs as compared to HD-ASCs. Finally, we demonstrated a significant increase in CD36 and PPARγ expression in HD-ASCs in the presence of MM-plasmas or the seven cytokines individually, similarly as in MM-ASCs. We conclude that specific cytokines in MM-plasmas, besides the well-known DKK1, inhibit the osteoblastic differentiation of MM- and HD-ASCs with a skewing towards adipocyte differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MM-plasmas inhibit osteoblastic differentiation in HD-ASCs.
Fig. 2: Circulating cytokines in MM-plasmas inhibit osteoblastic differentiation.
Fig. 3: Transcriptome profiles of MM-ASCs and HD-ASCs.
Fig. 4: Cytokines in MM-plasmas enhance adipogenesis-related gene expression.

Similar content being viewed by others

References

  1. Rollig C, Knop S, Bornhauser M. Multiple myeloma. Lancet. 2015;385:2197–208.

    Article  PubMed  Google Scholar 

  2. Roodman GD. Mechanisms of bone metastasis. N Engl J Med. 2004;350:1655–64.

    Article  CAS  PubMed  Google Scholar 

  3. Terpos E, Berenson J, Cook RJ, Lipton A, Coleman RE. Prognostic variables for survival and skeletal complications in patients with multiple myeloma osteolytic bone disease. Leukemia. 2010;24:1043–9.

    Article  CAS  PubMed  Google Scholar 

  4. Terpos E, Morgan G, Dimopoulos MA, Drake MT, Lentzsch S, Raje N, et al. International Myeloma Working Group recommendations for the treatment of multiple myeloma-related bone disease. J Clin Oncol. 2013;31:2347–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Adamik J, Galson DL, Roodman GD. Osteoblast suppression in multiple myeloma bone disease. J Bone Oncol. 2018;13:62–70.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Delgado-Calle J, Bellido T, Roodman GD. Role of osteocytes in multiple myeloma bone disease. Curr Opin Support Palliat Care. 2014;8:407–13.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lee OL, Horvath N, Lee C, Joshua D, Ho J, Szer J, et al. Bisphosphonate guidelines for treatment and prevention of myeloma bone disease. Intern Med J. 2017;47:938–51.

    Article  CAS  PubMed  Google Scholar 

  8. Xu S, De Veirman K, De Becker A, Vanderkerken K, Van Riet I. Mesenchymal stem cells in multiple myeloma: a therapeutical tool or target? Leukemia. 2018;32:1500–14.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol. 2004;36:568–84.

    Article  CAS  PubMed  Google Scholar 

  10. Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy. 2013;15:641–8.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bereziat V, Mazurier C, Auclair M, Ferrand N, Jolly S, Marie T, et al. Systemic dysfunction of osteoblast differentiation in adipose-derived stem cells from patients with multiple myeloma. Cells. 2019; 8: 441.

  12. Baglio SR, Rooijers K, Koppers-Lalic D, Verweij FJ, Perez Lanzon M, Zini N, et al. Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res Ther. 2015;6:127.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fakhry M, Hamade E, Badran B, Buchet R, Magne D. Molecular mechanisms of mesenchymal stem cell differentiation towards osteoblasts. World J Stem Cells. 2013;5:136–48.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Raimondo S, Urzi O, Conigliaro A, Bosco GL, Parisi S, Carlisi M, et al. Extracellular vesicle microRNAs contribute to the osteogenic inhibition of mesenchymal stem cells in multiple myeloma. Cancers (Basel). 2020;12:449.

  15. Silbermann R, Roodman GD. Myeloma bone disease: Pathophysiology and management. J Bone Oncol. 2013;2:59–69.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhang X, Yuan X, Shi H, Wu L, Qian H, Xu W. Exosomes in cancer: small particle, big player. J Hematol Oncol. 2015;8:83.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Faict S, Muller J, De Veirman K, De Bruyne E, Maes K, Vrancken L, et al. Exosomes play a role in multiple myeloma bone disease and tumor development by targeting osteoclasts and osteoblasts. Blood Cancer J. 2018;8:105.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liu Z, Liu H, Li Y, Shao Q, Chen J, Song J, et al. Multiple myeloma-derived exosomes inhibit osteoblastic differentiation and improve IL-6 secretion of BMSCs from multiple myeloma. J Investig Med. 2020;68:45–51.

    Article  PubMed  Google Scholar 

  19. Raimondo S, Saieva L, Vicario E, Pucci M, Toscani D, Manno M, et al. Multiple myeloma-derived exosomes are enriched of amphiregulin (AREG) and activate the epidermal growth factor pathway in the bone microenvironment leading to osteoclastogenesis. J Hematol Oncol. 2019;12:2.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang L, Lei Q, Wang H, Xu C, Liu T, Kong F, et al. Tumor-derived extracellular vesicles inhibit osteogenesis and exacerbate myeloma bone disease. Theranostics. 2019;9:196–209.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Roccaro AM, Sacco A, Maiso P, Azab AK, Tai YT, Reagan M, et al. BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J Clin Invest. 2013;123:1542–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Caron M, Auclairt M, Vissian A, Vigouroux C, Capeau J. Contribution of mitochondrial dysfunction and oxidative stress to cellular premature senescence induced by antiretroviral thymidine analogues. Antivir Ther. 2008;13:27–38.

    Article  CAS  PubMed  Google Scholar 

  23. Wingett SW, Andrews S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Res. 2018;7:1338.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

    Article  CAS  PubMed  Google Scholar 

  25. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma. 2011;12:323.

    Article  CAS  Google Scholar 

  26. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.

    Article  CAS  PubMed  Google Scholar 

  27. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics research. Behav Brain Res. 2001;125:279–84.

    Article  CAS  PubMed  Google Scholar 

  28. Bafico A, Liu G, Yaniv A, Gazit A, Aaronson SA. Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow. Nat Cell Biol. 2001;3:683–6.

    Article  CAS  PubMed  Google Scholar 

  29. Kaiser M, Mieth M, Liebisch P, Oberlander R, Rademacher J, Jakob C, et al. Serum concentrations of DKK-1 correlate with the extent of bone disease in patients with multiple myeloma. Eur J Haematol. 2008;80:490–4.

    Article  CAS  PubMed  Google Scholar 

  30. Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med. 2003;349:2483–94.

    Article  CAS  PubMed  Google Scholar 

  31. Hideshima T, Mitsiades C, Tonon G, Richardson PG, Anderson KC. Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer. 2007;7:585–98.

    Article  CAS  PubMed  Google Scholar 

  32. Podar K, Richardson PG, Hideshima T, Chauhan D, Anderson KC. The malignant clone and the bone-marrow environment. Best Pr Res Clin Haematol. 2007;20:597–612.

    Article  CAS  Google Scholar 

  33. Reagan MR, Ghobrial IM. Multiple myeloma mesenchymal stem cells: characterization, origin, and tumor-promoting effects. Clin Cancer Res. 2012;18:342–9.

    Article  CAS  PubMed  Google Scholar 

  34. Corre J, Mahtouk K, Attal M, Gadelorge M, Huynh A, Fleury-Cappellesso S, et al. Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia. 2007;21:1079–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Garderet L, Mazurier C, Chapel A, Ernou I, Boutin L, Holy X, et al. Mesenchymal stem cell abnormalities in patients with multiple myeloma. Leuk Lymphoma. 2007;48:2032–41.

    Article  CAS  PubMed  Google Scholar 

  36. Ring ES, Lawson MA, Snowden JA, Jolley I, Chantry AD. New agents in the treatment of myeloma bone disease. Calcif Tissue Int. 2018;102:196–209.

    Article  CAS  PubMed  Google Scholar 

  37. Hofmann JN, Landgren O, Landy R, Kemp TJ, Santo L, McShane CM, et al. A prospective study of circulating chemokines and angiogenesis markers and risk of multiple myeloma and its precursor. JNCI Cancer Spectr. 2020;4:pkz104.

    Article  PubMed  Google Scholar 

  38. Kline M, Donovan K, Wellik L, Lust C, Jin W, Moon-Tasson L, et al. Cytokine and chemokine profiles in multiple myeloma; significance of stromal interaction and correlation of IL-8 production with disease progression. Leuk Res. 2007;31:591–8.

    Article  CAS  PubMed  Google Scholar 

  39. Zingone A, Wang W, Corrigan-Cummins M, Wu SP, Plyler R, Korde N, et al. Altered cytokine and chemokine profiles in multiple myeloma and its precursor disease. Cytokine. 2014;69:294–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Alexandrakis MG, Sfiridaki A, Miyakis S, Pappa C, Kandidaki E, Alegakis A, et al. Relationship between serum levels of vascular endothelial growth factor, hepatocyte growth factor and matrix metalloproteinase-9 with biochemical markers of bone disease in multiple myeloma. Clin Chim Acta. 2007;379:31–35.

    Article  CAS  PubMed  Google Scholar 

  41. Karsenty G, Mera P. Molecular bases of the crosstalk between bone and muscle. Bone. 2018;115:43–49.

    Article  CAS  PubMed  Google Scholar 

  42. Giuliani N, Colla S, Lazzaretti M, Sala R, Roti G, Mancini C, et al. Proangiogenic properties of human myeloma cells: production of angiopoietin-1 and its potential relationship to myeloma-induced angiogenesis. Blood. 2003;102:638–45.

    Article  CAS  PubMed  Google Scholar 

  43. Uneda S, Matsuno F, Sonoki T, Tniguchi I, Kawano F, Hata H. Expressions of vascular endothelial growth factor and angiopoietin-2 in myeloma cells. Haematologica. 2003;88:113–5.

    CAS  PubMed  Google Scholar 

  44. Giuliani N, Colla S, Morandi F, Rizzoli V. Angiopoietin-1 and myeloma-induced angiogenesis. Leuk Lymphoma. 2005;46:29–33.

    Article  CAS  PubMed  Google Scholar 

  45. Pappa CA, Tsirakis G, Devetzoglou M, Zafeiri M, Vyzoukaki R. Androvitsanea A, et al. Bone marrow mast cell density correlates with serum levels of VEGF and CXC chemokines ENA-78 and GRO-alpha in multiple myeloma. Tumour Biol. 2014;35:5647–51.

    Article  CAS  PubMed  Google Scholar 

  46. Tsirakis G, Pappa CA, Kanellou P, Stratinaki MA, Xekalou A, Psarakis FE, et al. Role of platelet-derived growth factor-AB in tumour growth and angiogenesis in relation with other angiogenic cytokines in multiple myeloma. Hematol Oncol. 2012;30:131–6.

    Article  CAS  PubMed  Google Scholar 

  47. Hock JM, Canalis E. Platelet-derived growth factor enhances bone cell replication, but not differentiated function of osteoblasts. Endocrinology. 1994;134:1423–8.

    Article  CAS  PubMed  Google Scholar 

  48. Li P, Deng Q, Liu J, Yan J, Wei Z, Zhang Z, et al. Roles for HB-EGF in mesenchymal stromal cell proliferation and differentiation during skeletal growth. J Bone Min Res. 2019;34:295–309.

    Article  CAS  Google Scholar 

  49. Lu X, Wang Q, Hu G, Van Poznak C, Fleisher M, Reiss M, et al. ADAMTS1 and MMP1 proteolytically engage EGF-like ligands in an osteolytic signaling cascade for bone metastasis. Genes Dev. 2009;23:1882–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Aggarwal R, Ghobrial IM, Roodman GD. Chemokines in multiple myeloma. Exp Hematol. 2006;34:1289–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Al-haidari AA, Syk I, Jirstrom K, Thorlacius H. CCR4 mediates CCL17 (TARC)-induced migration of human colon cancer cells via RhoA/Rho-kinase signaling. Int J Colorectal Dis. 2013;28:1479–87.

    Article  PubMed  Google Scholar 

  52. Liu LB, Xie F, Chang KK, Shang WQ, Meng YH, Yu JJ, et al. Chemokine CCL17 induced by hypoxia promotes the proliferation of cervical cancer cell. Am J Cancer Res. 2015;5:3072–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhu F, Li X, Chen S, Zeng Q, Zhao Y, Luo F. Tumor-associated macrophage or chemokine ligand CCL17 positively regulates the tumorigenesis of hepatocellular carcinoma. Med Oncol. 2016;33:17.

    Article  PubMed  Google Scholar 

  54. Yaccoby S, Wezeman MJ, Zangari M, Walker R, Cottler-Fox M, Gaddy D, et al. Inhibitory effects of osteoblasts and increased bone formation on myeloma in novel culture systems and a myelomatous mouse model. Haematologica. 2006;91:192–9.

    CAS  PubMed  Google Scholar 

  55. Gainor BJ, Buchert P. Fracture healing in metastatic bone disease. Clin Orthop Relat Res. 1983;178:297–302.

  56. Gao H, Volat F, Sandhow L, Galitzky J, Nguyen T, Esteve D, et al. CD36 is a marker of human adipocyte progenitors with pronounced adipogenic and triglyceride accumulation potential. Stem Cells. 2017;35:1799–814.

    Article  CAS  PubMed  Google Scholar 

  57. Kawai M, Rosen CJ. PPARgamma: a circadian transcription factor in adipogenesis and osteogenesis. Nat Rev Endocrinol. 2010;6:629–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vega RB, Huss JM, Kelly DP. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol. 2000;20:1868–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu Z, Liu H, He J, Lin P, Tong Q, Yang J. Myeloma cells shift osteoblastogenesis to adipogenesis by inhibiting the ubiquitin ligase MURF1 in mesenchymal stem cells. Sci Signal 2020; 13:eaay8203.

  60. Bilalis A, Pouliou E, Roussou M, Papanikolaou A, Tassidou A, Economopoulos T, et al. Increased expression of platelet derived growth factor receptor beta on trephine biopsies correlates with advanced myeloma. J BUON. 2017;22:1032–7.

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Institut National de Santé et de Recherche Médicale (INSERM), the Sorbonne University, the Centre de Recherche Saint-Antoine, the Groupement d’Entreprises Françaises dans la Lutte contre le Cancer (GEFLUC), the Intergroupe Francophone du Myélome (IFM) and the Fondation pour la Recherche Médicale (BF, FRM EQU2019 030077868). This work benefited from equipment and services from the iGenSeq (RNA sequencing) and iCONICS (RNAsequence analyses) core facilities of the ICM (Institut du Cerveau et de la Moelle épinière, Hôpital Pitié Salpêtrière, Paris, France). The authors acknowledge the valuable assistance of Romain Morichon of the Sorbonne Université-INSERM, UMR_S938, Centre de Recherche Saint-Antoine Imagery platform.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, LK, MS, LG; data curation, LK, MA, OP, NF, MZ; formal analysis, LK, MA, OP, MS, LG; funding acquisition, LK, MS, LG; methodology, LK, MA, OP, NF, MZ; supervision, LK, MS, LG; writing of original draft, LK, MS, LG; reviewing and editing, LK, BF, FD, MS, LG.

Corresponding author

Correspondence to Laurent Garderet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobari, L., Auclair, M., Piau, O. et al. Circulating cytokines present in multiple myeloma patients inhibit the osteoblastic differentiation of adipose stem cells. Leukemia 36, 540–548 (2022). https://doi.org/10.1038/s41375-021-01428-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-021-01428-6

This article is cited by

Search

Quick links