Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

EGFR and HER2 exon 20 insertions in solid tumours: from biology to treatment

An Author Correction to this article was published on 05 October 2021

This article has been updated

Abstract

Protein tyrosine kinases of the human epidermal growth factor receptor family, including EGFR and HER2, have emerged as important therapeutic targets in non-small-cell lung, breast and gastroesophageal cancers, and are of relevance for the treatment of various other malignancies (particularly colorectal cancer). Classic activating EGFR exon 19 deletions and exon 21 mutations, and HER2 amplification and/or overexpression, are predictive of response to matched molecularly targeted therapies, translating into favourable objective response rates and survival outcomes. By comparison, cancers with insertion mutations in exon 20 of either EGFR or HER2 are considerably less sensitive to the currently available tyrosine kinase inhibitors and antibodies targeting these receptors. These exon 20 insertions are structurally distinct from other EGFR and HER2 mutations, providing an explanation for this lack of sensitivity. In this Review, we first discuss the prevalence and pan-cancer distribution of EGFR and HER2 exon 20 insertions, their biology and detection, and associated responses to current molecularly targeted therapies and immunotherapies. We then focus on novel approaches that are being developed to more effectively target tumours driven by these non-classic EGFR and HER2 alterations.

Key points

  • EGFR and HER2 exon 20 insertion mutations occur in approximately 0.35% and 0.34%, respectively, of all cancers in the American Association for Cancer Research Project GENIE database but are considerably more prevalent in urothelial, non-small-cell lung, breast and central nervous system cancers.

  • Sensitive targeted assays are essential to reliably detect EGFR or HER2 exon 20 insertions.

  • First-generation to third-generation EGFR tyrosine kinase inhibitors (TKIs) and HER2 TKIs have modest activity against cancers with exon 20 insertions in EGFR and HER2, respectively.

  • In 2021, both the EGFR–MET-targeted bispecific antibody amivantamab and the novel EGFR TKI mobocertinib received Accelerated Approval from the FDA for the treatment of patients with advanced-stage non-small-cell lung cancer harbouring EGFR exon 20 insertions.

  • New drugs and combination approaches for patients harbouring EGFR or HER2 exon 20 insertions are under investigation.

  • Little is known about the clinical implications of co-mutations, such as TP53 or STK11 mutations, in cancers with EGFR or HER2 exon 20 insertions, warranting further studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: EGFR gene and protein domain organization and summary of exon 20 insertions.
Fig. 2: EGFR and HER2 domain architecture and structural changes upon activation.
Fig. 3: HER2 gene and protein domain organization and summary of exon 20 mutations.
Fig. 4: EGFR signalling pathway and related targeted therapeutics.

Similar content being viewed by others

Change history

References

  1. Malone, E. R., Oliva, M., Sabatini, P. J. B., Stockley, T. L. & Siu, L. L. Molecular profiling for precision cancer therapies. Genome Med. 12, 8 (2020).

    PubMed  PubMed Central  Google Scholar 

  2. Blumenthal, G. M. et al. Overall response rate, progression-free survival, and overall survival with targeted and standard therapies in advanced non–small-cell lung cancer: US Food and Drug Administration Trial-Level and Patient-Level Analyses. J. Clin. Oncol. 33, 1008–1014 (2015).

    PubMed  PubMed Central  Google Scholar 

  3. Wee, P. & Wang, Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers 9, 52 (2017).

    PubMed Central  Google Scholar 

  4. Oh, D.-Y. & Bang, Y.-J. HER2-targeted therapies – a role beyond breast cancer. Nat. Rev. Clin. Oncol. 17, 33–48 (2020).

    CAS  PubMed  Google Scholar 

  5. Wu, R. et al. A narrative review of advances in treatment and survival prognosis of HER2-positive malignant lung cancers. J. Thorac. Dis. 13, 3708–3720 (2021).

    PubMed  PubMed Central  Google Scholar 

  6. Arcila, M. E. et al. Prevalence, clinicopathologic associations, and molecular spectrum of ERBB2 (HER2) tyrosine kinase mutations in lung adenocarcinomas. Clin. Cancer Res. 18, 4910–4918 (2012).

    CAS  PubMed  Google Scholar 

  7. Katayama, R. et al. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Sci. Transl. Med. 4, 120ra17 (2012).

    PubMed  PubMed Central  Google Scholar 

  8. Mishra, R., Patel, H., Alanazi, S., Yuan, L. & Garrett, J. T. HER3 signaling and targeted therapy in cancer. Oncol. Rev. 12, 355 (2018).

    PubMed  PubMed Central  Google Scholar 

  9. Sharma, N. & Graziano, S. Overview of the LUX-Lung clinical trial program of afatinib for non-small cell lung cancer. Cancer Treat. Rev. 69, 143–151 (2018).

    CAS  PubMed  Google Scholar 

  10. Rosell, R. et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 13, 239–246 (2012).

    CAS  PubMed  Google Scholar 

  11. Maemondo, M. et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N. Engl. J. Med. 362, 2380–2388 (2010).

    CAS  PubMed  Google Scholar 

  12. Costa, R. L. B. & Czerniecki, B. J. Clinical development of immunotherapies for HER2+ breast cancer: a review of HER2-directed monoclonal antibodies and beyond. NPJ Breast Cancer 6, 10 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu, H., Zhang, B. & Sun, Z. Spectrum of EGFR aberrations and potential clinical implications: insights from integrative pan-cancer analysis. Cancer Commun. 40, 43–59 (2020).

    Google Scholar 

  14. Kobayashi, Y. & Mitsudomi, T. Not all epidermal growth factor receptor mutations in lung cancer are created equal: perspectives for individualized treatment strategy. Cancer Sci. 107, 1179–1186 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hanif, F., Muzaffar, K., Perveen, K., Malhi, S. M. & Simjee, S. U. Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac. J. Cancer Prev. 18, 3–9 (2017).

    PubMed  PubMed Central  Google Scholar 

  16. Sequist, L. V., Bell, D. W., Lynch, T. J. & Haber, D. A. Molecular predictors of response to epidermal growth factor receptor antagonists in non-small-cell lung cancer. J. Clin. Oncol. 25, 587–595 (2007).

    CAS  PubMed  Google Scholar 

  17. Gristina, V. et al. The significance of epidermal growth factor receptor uncommon mutations in non-small cell lung cancer: a systematic review and critical appraisal. Cancer Treat. Rev. 85, 101994 (2020).

    CAS  PubMed  Google Scholar 

  18. My Cancer Genome. EGFR exon 20 insertion. https://www.mycancergenome.org/content/alteration/egfr-exon-20-insertion/ (2017).

  19. Oxnard, G. R. et al. Natural history and molecular characteristics of lung cancers harboring EGFR exon 20 insertions. J. Thorac. Oncol. 8, 179–184 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, Z. et al. A pan-cancer analysis of HER2 index revealed transcriptional pattern for precise selection of HER2-targeted therapy. EBioMedicine 62, 103074 (2020).

    PubMed  PubMed Central  Google Scholar 

  21. Bang, Y.-J. et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376, 687–697 (2010).

    CAS  PubMed  Google Scholar 

  22. Swain, S. M. et al. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N. Engl. J. Med. 372, 724–734 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu, H. A. et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin. Cancer Res. 19, 2240–2247 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao, J. & Xia, Y. Targeting HER2 alterations in non-small-cell lung cancer: a comprehensive review. JCO Precis. Oncol. 4, 411–425 (2020).

    PubMed  Google Scholar 

  25. Yoshizawa, A. et al. HER2 status in lung adenocarcinoma: a comparison of immunohistochemistry, fluorescence in situ hybridization (FISH), dual-ISH, and gene mutations. Lung Cancer 85, 373–378 (2014).

    PubMed  Google Scholar 

  26. Connell, C. M. & Doherty, G. J. Activating HER2 mutations as emerging targets in multiple solid cancers. ESMO Open 2, e000279 (2017).

    PubMed  PubMed Central  Google Scholar 

  27. My Cancer Genome. ERBB2 exon 20 insertion. https://www.mycancergenome.org/content/alteration/erbb2-exon-20-insertion (2017).

  28. AACR Project GENIE Consortium.AACR Project GENIE: powering precision medicine through an international consortium. Cancer Discov. 7, 818–831 (2017).

    Google Scholar 

  29. Yasuda, H., Kobayashi, S. & Costa, D. B. EGFR exon 20 insertion mutations in non-small-cell lung cancer: preclinical data and clinical implications. Lancet Oncol. 13, e23–e31 (2012).

    CAS  PubMed  Google Scholar 

  30. Beau-Faller, M. et al. Rare EGFR exon 18 and exon 20 mutations in non-small-cell lung cancer on 10 117 patients: a multicentre observational study by the French ERMETIC-IFCT network. Ann. Oncol. 25, 126–131 (2014).

    CAS  PubMed  Google Scholar 

  31. Cardona, A. F. et al. EGFR exon 20 insertion in lung adenocarcinomas among Hispanics (geno1.2-CLICaP). Lung Cancer 125, 265–272 (2018).

    PubMed  Google Scholar 

  32. Robichaux, J. P. et al. Mechanisms and clinical activity of an EGFR and HER2 exon 20-selective kinase inhibitor in non-small cell lung cancer. Nat. Med. 24, 638–646 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ramalingam, S. S. et al. Overall survival with osimertinib in untreated, EGFR-mutated advanced NSCLC. N. Engl. J. Med. 382, 41–50 (2019).

    PubMed  Google Scholar 

  34. Madison, R. W. et al. Urothelial cancer harbours EGFR and HER2 amplifications and exon 20 insertions. BJU Int. 125, 739–746 (2020).

    CAS  PubMed  Google Scholar 

  35. Mazieres, J. et al. Lung cancer that harbors an HER2 mutation: epidemiologic characteristics and therapeutic perspectives. J. Clin. Oncol. 31, 1997–2003 (2013).

    CAS  PubMed  Google Scholar 

  36. Robichaux, J. P. et al. Pan-cancer landscape and analysis of ERBB2 mutations identifies poziotinib as a clinically active inhibitor and enhancer of T-DM1 activity. Cancer Cell 36, 444–457.e7 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao, S. et al. Conformational landscapes of HER2 exon 20 insertions explain their sensitivity to kinase inhibitors in lung adenocarcinoma. J. Thorac. Oncol. 15, 962–972 (2020).

    CAS  PubMed  Google Scholar 

  38. Stephens, P. et al. Lung cancer: intragenic ERBB2 kinase mutations in tumours. Nature 431, 525–526 (2004).

    CAS  PubMed  Google Scholar 

  39. Rayego-Mateos, S. et al. Role of epidermal growth factor receptor (EGFR) and its ligands in kidney inflammation and damage. Mediators Inflamm. 2018, 8739473 (2018).

    PubMed  PubMed Central  Google Scholar 

  40. Yoshida, T., Zhang, G. & Haura, E. B. Targeting epidermal growth factor receptor: central signaling kinase in lung cancer. Biochem. Pharmacol. 80, 613–623 (2010).

    CAS  PubMed  Google Scholar 

  41. Purba, E. R., Saita, E. I. & Maruyama, I. N. Activation of the EGF receptor by ligand binding and oncogenic mutations: the “rotation model”. Cells 6, 13 (2017).

    PubMed Central  Google Scholar 

  42. Riess, J. W. et al. Diverse EGFR exon 20 insertions and co-occurring molecular alterations identified by comprehensive genomic profiling of NSCLC. J. Thorac. Oncol. 13, 1560–1568 (2018).

    PubMed  PubMed Central  Google Scholar 

  43. Yasuda, H. et al. Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer. Sci. Transl. Med. 5, 216ra177 (2013).

    PubMed  PubMed Central  Google Scholar 

  44. Vyse, S. & Huang, P. H. Targeting EGFR exon 20 insertion mutations in non-small cell lung cancer. Signal. Transduct. Target. Ther. 4, 5 (2019).

    PubMed  PubMed Central  Google Scholar 

  45. Eck, M. J. & Yun, C. H. Structural and mechanistic underpinnings of the differential drug sensitivity of EGFR mutations in non-small cell lung cancer. Biochim. Biophys. Acta 1804, 559–566 (2010).

    CAS  PubMed  Google Scholar 

  46. Galdadas, I. et al. Structural basis of the effect of activating mutations on the EGF receptor. eLife 10, e65824 (2021).

    PubMed  PubMed Central  Google Scholar 

  47. Piotrowska, Z., Wang, Y., Sequist, L. V. & Ramalingam, S. S. ECOG-ACRIN 5162: A phase II study of osimertinib 160mg in NSCLC with EGFR exon 20 insertions [abstract]. J. Clin. Oncol. 38 (Suppl. 15), 9513 (2020).

    Google Scholar 

  48. Kim, T. et al. Phase II study of osimertinib in NSCLC patients with EGFR exon 20 insertion mutation: a multicenter trial of the Korean Cancer Study Group (LU17-19) [abstract 1529P]. Ann. Oncol. 30 (Suppl. 5), v628 (2019).

    Google Scholar 

  49. Graus-Porta, D., Beerli, R. R. & Hynes, N. E. Single-chain antibody-mediated intracellular retention of ErbB-2 impairs Neu differentiation factor and epidermal growth factor signaling. Mol. Cell. Biol. 15, 1182–1191 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Shimamura, T. et al. Non-small-cell lung cancer and Ba/F3 transformed cells harboring the ERBB2 G776insV_G/C mutation are sensitive to the dual-specific epidermal growth factor receptor and ERBB2 inhibitor HKI-272. Cancer Res. 66, 6487–6491 (2006).

    CAS  PubMed  Google Scholar 

  51. Wang, S. E. et al. HER2 kinase domain mutation results in constitutive phosphorylation and activation of HER2 and EGFR and resistance to EGFR tyrosine kinase inhibitors. Cancer Cell 10, 25–38 (2006).

    PubMed  Google Scholar 

  52. Perera, S. A. et al. HER2YVMA drives rapid development of adenosquamous lung tumors in mice that are sensitive to BIBW2992 and rapamycin combination therapy. Proc. Natl Acad. Sci. USA 106, 474–479 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hyman, D. M. et al. HER kinase inhibition in patients with HER2- and HER3-mutant cancers. Nature 554, 189–194 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kosaka, T. et al. Response heterogeneity of EGFR and HER2 exon 20 insertions to covalent EGFR and HER2 inhibitors. Cancer Res. 77, 2712–2721 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Baraibar, I., Mezquita, L., Gil-Bazo, I. & Planchard, D. Novel drugs targeting EGFR and HER2 exon 20 mutations in metastatic NSCLC. Crit. Rev. Oncol. Hematol. 148, 102906 (2020).

    PubMed  Google Scholar 

  56. Addeo, A., Tabbò, F., Robinson, T., Buffoni, L. & Novello, S. Precision medicine in ALK rearranged NSCLC: a rapidly evolving scenario. Crit. Rev. Oncol. Hematol. 122, 150–156 (2018).

    PubMed  Google Scholar 

  57. Friedlaender, A., Banna, G., Patel, S. & Addeo, A. Diagnosis and treatment of ALK aberrations in metastatic NSCLC. Curr. Treat. Options Oncol. 20, 79 (2019).

    PubMed  Google Scholar 

  58. Kitamura, A., Hosoda, W., Sasaki, E., Mitsudomi, T. & Yatabe, Y. Immunohistochemical detection of EGFR mutation using mutation-specific antibodies in lung cancer. Clin. Cancer Res. 16, 3349–3355 (2010).

    CAS  PubMed  Google Scholar 

  59. Zhang, X. et al. HER2 exon 20 insertion mutations in lung adenocarcinoma: case series and response to pyrotinib. Front. Oncol. 10, 1162 (2020).

    PubMed  PubMed Central  Google Scholar 

  60. Angulo, B. et al. A comparison of EGFR mutation testing methods in lung carcinoma: direct sequencing, real-time PCR and immunohistochemistry. PLoS ONE 7, e43842 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Lindeman, N. I. et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J. Thorac. Oncol. 8, 823–859 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lindeman, N. I. et al. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. Arch. Pathol. Lab. Med. 142, 321–346 (2018).

    CAS  PubMed  Google Scholar 

  63. Khoo, C., Rogers, T. M., Fellowes, A., Bell, A. & Fox, S. Molecular methods for somatic mutation testing in lung adenocarcinoma: EGFR and beyond. Transl. Lung Cancer Res. 4, 126–141 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Qiagen. therascreen® EGFR RGQ PCR Kit Handbook Version 2 (Qiagen, 2020).

  65. Yang, S. et al. Exon 20 YVMA insertion is associated with high incidence of brain metastasis and inferior outcome of chemotherapy in advanced non-small cell lung cancer patients with HER2 kinase domain mutations. Transl. Lung Cancer Res. 10, 753–765 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Rothberg, J. M. et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature 475, 348–352 (2011).

    CAS  PubMed  Google Scholar 

  67. Skoulidis, F. & Heymach, J. V. Co-occurring genomic alterations in non-small-cell lung cancer biology and therapy. Nat. Rev. Cancer 19, 495–509 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Tuononen, K. et al. Comparison of targeted next-generation sequencing (NGS) and real-time PCR in the detection of EGFR, KRAS, and BRAF mutations on formalin-fixed, paraffin-embedded tumor material of non-small cell lung carcinoma-superiority of NGS. Genes Chromosomes Cancer 52, 503–511 (2013).

    CAS  PubMed  Google Scholar 

  69. Coleman, N. et al. EGFR exon 20 insertion (A763_Y764insFQEA) mutant NSCLC is not identified by Roche cobas version 2 tissue testing but has durable intracranial and extracranial response to osimertinib. J. Thorac. Oncol. 15, e162–e165 (2020).

    CAS  PubMed  Google Scholar 

  70. Hwang, I., Kim, S., Chun, S., Yoon, S. & Lee, D. H. Next-generation sequencing for effective detection of various EGFR exon 20 insertions (E20ins) in non-small cell lung cancer (NSCLC) [abstract P2.01-51]. J. Thorac. Oncol. 14 (Suppl. 10), 659 (2019).

    Google Scholar 

  71. Ou, S.-H. I. et al. Characterization of 648 non-small cell lung cancer (NSCLC) cases with 28 unique HER2 exon 20 insertions [abstract]. J. Clin. Oncol. 37 (Suppl. 15), 9063 (2019).

    Google Scholar 

  72. Mack, P. C. et al. Spectrum of driver mutations and clinical impact of circulating tumor DNA analysis in non-small cell lung cancer: analysis of over 8000 cases. Cancer 126, 3219–3228 (2020).

    CAS  PubMed  Google Scholar 

  73. Food and Drug Administration. FDA grants accelerated approval to amivantamab-vmjw for metastatic non-small cell lung cancer. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-amivantamab-vmjw-metastatic-non-small-cell-lung-cancer (2021).

  74. FDA. FDA grants accelerated approval to mobocertinib for metastatic non-small cell lung cancer with EGFR exon 20 insertion mutations, https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-mobocertinib-metastatic-non-small-cell-lung-cancer-egfr-exon-20 (2021).

  75. Shu, C. A. et al. CHRYSALIS-2: A phase 1/1b study of lazertinib as monotherapy and in combination with amivantamab in patients with EGFR-mutant NSCLC [abstract]. J. Clin. Oncol. 39 (Suppl. 15), TPS9132 (2021).

    Google Scholar 

  76. Pandey, A. & Brufsky, A. M. Metastatic breast cancer patient with activating HER2 exon 20 insertion mutation with response to poziotinib: case report of compassionate drug use. Clin. Breast Cancer 19, e7–e11 (2019).

    PubMed  Google Scholar 

  77. Yudong, S. et al. EGFR exon 20 insertion mutation in advanced thymic squamous cell carcinoma: response to apatinib and clinical outcomes. Thorac. Cancer 9, 885–891 (2018).

    PubMed  PubMed Central  Google Scholar 

  78. Voon, P. J., Tsui, D. W. Y., Rosenfeld, N. & Chin, T. M. EGFR exon 20 insertion A763-Y764insFQEA and response to erlotinib–letter. Mol. Cancer Ther. 12, 2614–2615 (2013).

    CAS  PubMed  Google Scholar 

  79. Arcila, M. E. et al. EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics. Mol. Cancer Ther. 12, 220–229 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Yang, G. et al. EGFR exon 20 insertion mutations in Chinese advanced non-small cell lung cancer patients: molecular heterogeneity and treatment outcome from nationwide real-world study. Lung Cancer 145, 186–194 (2020).

    PubMed  Google Scholar 

  81. Kuiper, J. L. et al. Non-classic EGFR mutations in a cohort of Dutch EGFR-mutated NSCLC patients and outcomes following EGFR-TKI treatment. Br. J. Cancer 115, 1504–1512 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Choudhury, N. J. et al. Response to standard therapies and comprehensive genomic analysis for patients with lung adenocarcinoma with EGFR exon 20 insertions. Clin. Cancer Res. 27, 2920–2927 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Costa, D. B. et al. Pulse afatinib for ERBB2 exon 20 insertion-mutated lung adenocarcinomas. J. Thorac. Oncol. 11, 918–923 (2016).

    PubMed  PubMed Central  Google Scholar 

  84. De Greve, J. et al. Clinical activity of afatinib (BIBW 2992) in patients with lung adenocarcinoma with mutations in the kinase domain of HER2/neu. Lung Cancer 76, 123–127 (2012).

    PubMed  Google Scholar 

  85. Mazieres, J. et al. Lung cancer patients with HER2 mutations treated with chemotherapy and HER2-targeted drugs: results from the European EUHER2 cohort. Ann. Oncol. 27, 281–286 (2016).

    CAS  PubMed  Google Scholar 

  86. Besse, B. et al. Neratinib (N) with or without temsirolimus (Tem) in patients (Pts) with non-small cell lung cancer (Nsclc) carrying Her2 somatic mutations: an international randomized phase Ii study [abstract LBA39.PR]. Ann. Oncol. 25 (Suppl. 4), v1 (2014).

    Google Scholar 

  87. Gandhi, L. et al. Phase I study of neratinib in combination with temsirolimus in patients with human epidermal growth factor receptor 2-dependent and other solid tumors. J. Clin. Oncol. 32, 68–75 (2014).

    CAS  PubMed  Google Scholar 

  88. Ma, C. X. et al. Neratinib efficacy and circulating tumor DNA detection of HER2 mutations in HER2 nonamplified metastatic breast cancer. Clin. Cancer Res. 23, 5687–5695 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Zehir, A. et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med. 23, 703 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Razavi, P. et al. The genomic landscape of endocrine-resistant advanced breast cancers. Cancer Cell 34, 427–438.e6 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Bose, R. et al. Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer Discov. 3, 224–237 (2013).

    CAS  PubMed  Google Scholar 

  92. Smyth, L. M. et al. Efficacy and determinants of response to HER kinase inhibition in HER2-mutant metastatic breast cancer. Cancer Discov. 10, 198–213 (2020).

    CAS  PubMed  Google Scholar 

  93. Sudhan, D. R. et al. Extended adjuvant therapy with neratinib plus fulvestrant blocks ER/HER2 crosstalk and maintains complete responses of ER(+)/HER2(+) breast cancers: implications to the ExteNET trial. Clin. Cancer Res. 25, 771–783 (2019).

    CAS  PubMed  Google Scholar 

  94. Addeo, A. et al. Immunotherapy in non-small cell lung cancer harbouring driver mutations. Cancer Treat. Rev. 96, 102179 (2021).

    CAS  PubMed  Google Scholar 

  95. Lee, C. K. et al. Checkpoint inhibitors in metastatic EGFR-mutated non-small cell lung cancer–a meta-analysis. J. Thorac. Oncol. 12, 403–407 (2017).

    PubMed  Google Scholar 

  96. Creelan, B. C. et al. A phase 1 study of gefitinib combined with durvalumab in EGFR TKI-naive patients with EGFR mutation-positive locally advanced/metastatic non-small-cell lung cancer. Br. J. Cancer 124, 383–390 (2020).

    PubMed  PubMed Central  Google Scholar 

  97. Chen, K. et al. Immune microenvironment features and efficacy of PD-1/PD-L1 blockade in non-small cell lung cancer patients with EGFR or HER2 exon 20 insertions. Thorac. Cancer 12, 218–226 (2021).

    CAS  PubMed  Google Scholar 

  98. Negrao, M. V. et al. Association of EGFR and HER-2 exon 20 mutations with distinct patterns of response to immune checkpoint blockade in non-small cell lung cancer [abstract]. J. Clin. Oncol. 36 (Suppl. 15), 9052 (2018).

    Google Scholar 

  99. Lau, S. C. M. et al. Subtypes of EGFR- and HER2-mutant metastatic NSCLC influence response to immune checkpoint inhibitors. Clin. Lung Cancer 22, 253–259 (2021).

    CAS  PubMed  Google Scholar 

  100. Guisier, F. et al. Efficacy and safety of anti-PD-1 immunotherapy in patients with advanced non small cell lung cancer with BRAF, HER2 or MET mutation or RET-translocation. GFPC 01-2018. J. Thorac. Oncol. 15, 628–636 (2020).

    CAS  PubMed  Google Scholar 

  101. Heymach, J. V. Phase II trial of poziotinib for EGFR and HER2 exon 20 mutant NSCLC. Presented at the IASLC 19th World Conference on Lung Cancer. https://investor.sppirx.com/static-files/d6e05c4b-2c55-4b8c-8d7f-15b6c484f1c9 (2018).

  102. Le, X. et al. Poziotinib shows activity and durability of responses in subgroups of previously treated EGFR exon 20 NSCLC patients [abstract]. J. Clin. Oncol. 38 (Suppl. 15), 9514 (2020).

    Google Scholar 

  103. Sacher, A. et al. Safety, tolerability and preliminary efficacy of poziotinib with twice daily strategy in EGFR/HER2 exon 20 mutant non-small cell lung cancer [abstract 36MO]. Ann. Oncol. 32 (Suppl. 1), 15 (2021).

    Google Scholar 

  104. Socinski, M. A. et al. ZENITH20, a multinational, multi-cohort phase II study of poziotinib in NSCLC patients with EGFR or HER2 exon 20 insertion mutations [abstract LBA60]. Ann. Oncol. 31 (Suppl. 4), 1188 (2020).

    Google Scholar 

  105. Spectrum Pharmaceuticals. FDA grants fast track designation to Spectrum Pharmaceuticals’ poziotinib, https://bwnews.pr/3qCOVW5 (11 March 2021).

  106. Prelaj, A. et al. Poziotinib in advanced NSCLC with EGFR or HER2 exon 20 insertion mutation: initial results from a single site expanded access program [abstract 1388P]. Ann. Oncol. 31 (Suppl. 4), 882 (2020).

    Google Scholar 

  107. Prelaj, A. et al. Poziotinib for EGFR and HER2 exon 20 insertion mutation in advanced NSCLC: results from the expanded access program. Eur. J. Cancer 149, 235–248 (2021).

    CAS  PubMed  Google Scholar 

  108. Russo, A. et al. Heterogeneous responses to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in patients with uncommon EGFR mutations: new insights and future perspectives in this complex clinical scenario. Int. J. Mol. Sci. 20, 1431 (2019).

    CAS  PubMed Central  Google Scholar 

  109. Riely, G. J. et al. Activity and safety of mobocertinib (TAK-788) in previously treated non-small cell lung cancer with EGFR exon 20 insertion mutations from a phase 1/2 trial. Cancer Discov. 11, 1688–1699 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Horn, L. et al. Indirect comparison of TAK-788 vs real-world data outcomes in refractory non-small cell lung cancer (NSCLC) with EGFR exon 20 insertions [abstract]. J. Clin. Oncol. 38 (Suppl. 15), 9580 (2020).

    Google Scholar 

  111. Takeda. Takeda announces U.S. FDA Breakthrough Therapy Designation for mobocertinib (TAK-788) for the treatment of NSCLC patients with EGFR exon 20 insertion mutations. https://www.takeda.com/newsroom/newsreleases/2020/takeda-announces-u.s.-fda-breakthrough-therapy-designation-for-mobocertinib-tak-788-for-the-treatment-of-nsclc-patients-with-egfr-exon-20-insertion-mutations/ (2020).

  112. Ramalingam, S. S. et al. Mobocertinib (TAK-788) in EGFR exon 20 insertion (ex20ins)+metastatic NSCLC (mNSCLC): additional results from platinum-pretreated patients (pts) and EXCLAIM cohort of phase 1/2 study [abstract]. J. Clin. Oncol. 39 (Suppl. 15), 9014 (2021).

    Google Scholar 

  113. Zhou, C. et al. Mobocertinib in NSCLC with EGFR Exon 20 insertions: results from EXCLAIM and pooled platinum-pretreated patient populations [abstract OA04.03]. J. Thorac. Oncol. 16 (Suppl. 3), 108 (2021).

    Google Scholar 

  114. Han, H. et al. Targeting HER2 exon 20 insertion-mutant lung adenocarcinoma with a novel tyrosine kinase inhibitor mobocertinib. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-21-1526 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Estrada-Bernal, A. et al. Antitumor activity of tarloxotinib, a hypoxia-activated EGFR TKI, in patient-derived lung cancer cell lines harboring EGFR exon 20 insertions [abstract]. Mol. Cancer Ther. 17 (Suppl. 1), A157 (2018).

    Google Scholar 

  116. Estrada-Bernal, A. et al. Tarloxotinib is a hypoxia-activated pan-HER kinase inhibitor active against a broad range of HER-family oncogenes. Clin. Cancer Res. 27, 1463–1475 (2021).

    CAS  PubMed  Google Scholar 

  117. Liu, S. et al. First analysis of RAIN-701: study of tarloxotinib in patients with non-small cell lung cancer (NSCLC) EGFR exon 20 insertion, HER2-activating mutations & other solid tumours with NRG1/ERBB gene fusions [abstract LBA61]. Ann. Oncol. 31 (Suppl. 4), 1189 (2020).

    Google Scholar 

  118. Chen, Q. et al. Effectiveness and safety of pyrotinib, and association of biomarker with progression-free survival in patients with HER2-positive metastatic breast cancer: a real-world, multicentre analysis. Front. Oncol. 10, 811 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Ma, F. et al. Phase I study and biomarker analysis of pyrotinib, a novel irreversible pan-ErbB receptor tyrosine kinase inhibitor, in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J. Clin. Oncol. 35, 3105–3112 (2017).

    CAS  PubMed  Google Scholar 

  120. Xu, B. et al. Pyrotinib or lapatinib plus capecitabine for HER2+ metastatic breast cancer (PHOEBE): a randomized phase III trial [abstract]. J. Clin. Oncol. 38 (Suppl. 15), 1003 (2020).

    Google Scholar 

  121. Wang, Y. et al. Comparison the anti-tumor effect of pyrotinib, afatinb and T-DM1 in lung cancer organoids and PDX models with HER2 mutation [abstract]. J. Clin. Oncol. 36 (Suppl. 15), e24281 (2018).

    Google Scholar 

  122. Zhou, C. et al. Pyrotinib in HER2-mutant advanced lung adenocarcinoma after platinum-based chemotherapy: a multicenter, open-label, single-arm, phase II study. J. Clin. Oncol. 38, 2753–2761 (2020).

    CAS  PubMed  Google Scholar 

  123. Tsigelny, I. F. et al. Molecular determinants of drug-specific sensitivity for epidermal growth factor receptor (EGFR) exon 19 and 20 mutants in non-small cell lung cancer. Oncotarget 6, 6029–6039 (2015).

    PubMed  PubMed Central  Google Scholar 

  124. Brand, T. M., Iida, M. & Wheeler, D. L. Molecular mechanisms of resistance to the EGFR monoclonal antibody cetuximab. Cancer Biol. Ther. 11, 777–792 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Wheler, J. J. et al. Combining erlotinib and cetuximab is associated with activity in patients with non-small cell lung cancer (including squamous cell carcinomas) and wild-type EGFR or resistant mutations. Mol. Cancer Ther. 12, 2167–2175 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Fang, W., Huang, Y., Gan, J., Shao, Y. W. & Zhang, L. Durable response of low-dose afatinib plus cetuximab in an adenocarcinoma patient with a novel EGFR exon 20 insertion mutation. J. Thorac. Oncol. 14, e220–e221 (2019).

    PubMed  Google Scholar 

  127. Hasegawa, H. et al. Efficacy of afatinib or osimertinib plus cetuximab combination therapy for non-small-cell lung cancer with EGFR exon 20 insertion mutations. Lung Cancer 127, 146–152 (2019).

    PubMed  Google Scholar 

  128. Fang, W., Huang, Y., Gan, J., Hong, S. & Zhang, L. A patient with EGFR Exon 20 insertion-mutant non-small cell lung cancer responded to osimertinib plus cetuximab combination therapy. J. Thorac. Oncol. 14, e201–e202 (2019).

    PubMed  Google Scholar 

  129. van Veggel, B. et al. Afatinib and cetuximab in four patients with EGFR exon 20 insertion-positive advanced NSCLC. J. Thorac. Oncol. 13, 1222–1226 (2018).

    PubMed  Google Scholar 

  130. Goldberg, S. B. et al. Randomized trial of afatinib plus cetuximab versus afatinib alone for first-line treatment of EGFR-mutant non-small-cell lung cancer: final results from SWOG S1403. J. Clin. Oncol. 38, 4076–4085 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. van Veggel, B. et al. Interim results of a phase II single arm trial combining afatinib with cetuximab in patients with EGFRex20ins positive NSCLC [abstract]. J. Clin. Oncol. 39 (Suppl. 15), 9112 (2021).

    Google Scholar 

  132. Khelwatty, S. A. et al. HER2 expression is predictive of survival in cetuximab treated patients with RAS wild type metastatic colorectal cancer. Cancers (Basel) 13, 638 (2021).

    CAS  Google Scholar 

  133. Yun, J. et al. Antitumor activity of amivantamab (JNJ-61186372), an EGFR–MET bispecific antibody, in diverse models of EGFR exon 20 insertion-driven NSCLC. Cancer Discov. 10, 1194–1209 (2020).

    CAS  PubMed  Google Scholar 

  134. Moores, S. L. et al. A novel bispecific antibody targeting EGFR and cMet is effective against EGFR inhibitor-resistant lung tumors. Cancer Res. 76, 3942–3953 (2016).

    CAS  PubMed  Google Scholar 

  135. Haura, E. B. et al. JNJ-61186372 (JNJ-372), an EGFR-cMet bispecific antibody, in EGFR-driven advanced non-small cell lung cancer (NSCLC) [abstract]. J. Clin. Oncol. 37 (Suppl. 15), 9009 (2019).

    Google Scholar 

  136. Park, K. et al. Amivantamab (JNJ-61186372), an anti-EGFR-MET bispecific antibody, in patients with EGFR exon 20 insertion (exon20ins)-mutated non-small cell lung cancer (NSCLC) [abstract]. J. Clin. Oncol. 38 (Suppl.), 9512 (2020).

    Google Scholar 

  137. Park, K. et al. Amivantamab in EGFR exon 20 insertion-mutated non-small-cell lung cancer progressing on platinum chemotherapy: initial results from the CHRYSALIS phase I study. J. Clin. Oncol. https://doi.org/10.1200/JCO.21.00662 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Food and Drug Administration. FDA approves first targeted therapy for subset of non-small cell lung cancer. https://www.fda.gov/news-events/press-announcements/fda-approves-first-targeted-therapy-subset-non-small-cell-lung-cancer (2021).

  139. Verma, S. et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N. Engl. J. Med. 367, 1783–1791 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Wang, Y. et al. HER2 exon 20 insertions in non-small-cell lung cancer are sensitive to the irreversible pan-HER receptor tyrosine kinase inhibitor pyrotinib. Ann. Oncol. 30, 447–455 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Peters, S. et al. Trastuzumab emtansine (T-DM1) in patients with previously treated HER2-overexpressing metastatic non–small cell lung cancer: efficacy, safety, and biomarkers. Clin. Cancer Res. 25, 64–72 (2019).

    CAS  PubMed  Google Scholar 

  142. Li, B. T. et al. Ado-trastuzumab emtansine for patients with HER2-mutant lung cancers: results from a phase II basket trial. J. Clin. Oncol. 36, 2532–2537 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Ogitani, Y. et al. DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin. Cancer Res. 22, 5097–5108 (2016).

    CAS  PubMed  Google Scholar 

  144. Modi, S. et al. Updated results from DESTINY-breast01, a phase 2 trial of trastuzumab deruxtecan (T-DXd) in HER2 positive metastatic breast cancer [abstract]. Cancer Res. 81 (Suppl. 4), PD3-06 (2021).

    Google Scholar 

  145. Modi, S. et al. Antitumor activity and safety of trastuzumab deruxtecan in patients with HER2-low-expressing advanced breast cancer: results from a phase Ib study. J. Clin. Oncol. 38, 1887–1896 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Shitara, K. et al. Trastuzumab deruxtecan in previously treated HER2-positive gastric cancer. N. Engl. J. Med. 382, 2419–2430 (2020).

    CAS  PubMed  Google Scholar 

  147. Tsurutani, J. et al. Targeting HER2 with trastuzumab deruxtecan: a dose-expansion, phase I study in multiple advanced solid tumors. Cancer Discov. 10, 688–701 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Iwata, T. N. et al. A HER2-targeting antibody-drug conjugate, trastuzumab deruxtecan (DS-8201a), enhances antitumor immunity in a mouse model. Mol. Cancer Ther. 17, 1494–1503 (2018).

    CAS  PubMed  Google Scholar 

  149. Mazieres, J. et al. Combination of trastuzumab, pertuzumab and docetaxel in patients with advanced non-small cell lung cancer (NSCLC) harboring HER2 mutation: final results from the IFCT-1703 R2D2 trial [abstract]. J. Clin. Oncol. 39 (Suppl. 15), 9015 (2021).

    Google Scholar 

  150. Butler, L. M., Ferraldeschi, R., Armstrong, H. K., Centenera, M. M. & Workman, P. Maximizing the therapeutic potential of HSP90 inhibitors. Mol. Cancer Res. 13, 1445–1451 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Kamal, A. et al. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425, 407–410 (2003).

    CAS  PubMed  Google Scholar 

  152. Jorge, S. E. et al. EGFR exon 20 insertion mutations display sensitivity to Hsp90 inhibition in preclinical models and lung adenocarcinomas. Clin. Cancer Res. 24, 6548–6555 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Piotrowska, Z. et al. Final results of a phase 2 study of the hsp90 inhibitor luminespib (AUY922) in NSCLC patients harboring EGFR Exon 20 insertions [abstract OA 12.02]. J. Thorac. Oncol. 12 (11 Suppl. 2), 1776 (2017).

    Google Scholar 

  154. Gonzalvez, F. et al. Mobocertinib (TAK-788): a targeted inhibitor of EGFR exon 20 insertion mutants in non-small cell lung cancer. Cancer Discov. 11, 1672–1687 (2021).

    CAS  PubMed  Google Scholar 

  155. Li, A. M., Boichard, A., Felip, E. & Kurzrock, R. New therapeutic approaches to overcoming resistant EGFR exon 20 alterations. Crit. Rev. Oncol. Hematol. 151, 102990 (2020).

    PubMed  PubMed Central  Google Scholar 

  156. Uchibori, K. et al. Brigatinib combined with anti-EGFR antibody overcomes osimertinib resistance in EGFR-mutated non-small-cell lung cancer. Nat. Commun. 8, 14768 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Hasako, S. et al. TAS6417, a novel EGFR inhibitor targeting exon 20 insertion mutations. Mol. Cancer Ther. 17, 1648–1658 (2018).

    CAS  PubMed  Google Scholar 

  158. Piotrowska, Z. et al. Safety and activity of CLN-081 (TAS6417) in NSCLC with EGFR exon 20 insertion mutations (Ins20) [abstract]. J. Clin. Oncol. 39 (Suppl. 15), 9077 (2021).

    Google Scholar 

  159. Schram, A. M. et al. Safety and preliminary efficacy from the phase 1 portion of MasterKey-01: A First-in-human dose-escalation study to determine the recommended phase 2 dose (RP2D), pharmacokinetics (PK) and preliminary antitumor activity of BDTX-189, an inhibitor of allosteric ErbB mutations, in patients (pts) with advanced solid malignancies [abstract]. J. Clin. Oncol. 39 (Suppl. 15), 3086 (2021).

    Google Scholar 

  160. Yang, J. C.-H. et al. Preliminary safety and efficacy results from phase 1 studies of DZD9008 in NSCLC patients with EGFR Exon20 insertion mutations [abstract]. J. Clin. Oncol. 39 (Suppl. 15), 9008 (2021).

    Google Scholar 

  161. Jang, J. et al. Discovery of a highly potent and broadly effective epidermal growth factor receptor and HER2 exon 20 insertion mutant inhibitor. Angew. Chem. 130, 11803–11807 (2018).

    Google Scholar 

  162. Nagamoto, Y. et al. Preclinical evaluation of DS-2087b, a novel and selective inhibitor of EGFR/HER2 exon 20 insertions [abstract 11P]. Ann. Oncol. 31 (Suppl. 4), 248 (2020).

    Google Scholar 

  163. Li, J. et al. A multicenter, open-label, phase I clinical trial to evaluate the safety, tolerability, and pharmacokinetics of JMT-101 in patients (pts) with advanced colorectal cancer (ACC) [abstract]. J. Clin. Oncol. 38 (Suppl. 15), e16025 (2020).

    Google Scholar 

  164. Kim, H. R. et al. Prediction for response duration to epidermal growth factor receptor-tyrosine kinase inhibitors in EGFR mutated never smoker lung adenocarcinoma. Lung Cancer 83, 374–382 (2014).

    PubMed  Google Scholar 

  165. Roeper, J. et al. TP53 co-mutations in EGFR mutated patients in NSCLC stage IV: a strong predictive factor of ORR, PFS and OS in EGFR mt+NSCLC. Oncotarget 11, 250–264 (2020).

    PubMed  PubMed Central  Google Scholar 

  166. Stamos, J., Sliwkowski, M. X. & Eigenbrot, C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J. Biol. Chem. 277, 46265–46272 (2002).

    CAS  PubMed  Google Scholar 

  167. Wood, E. R. et al. A unique structure for epidermal growth factor receptor bound to GW572016 (lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res. 64, 6652–6659 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the patients, their families and the clinical trial teams who help with drug development. Molecular graphics of PDB structures were performed with UCSF Chimera, developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco, with support from the NIH (grant P41-GM103311). We thank R. Tufano for annotating variants in genomic databases. The work of V.S. is supported by NIH grant R01CA242845 and by his institution via the NIH Cancer Center Support Grant (P30 CA016672). We acknowledge the American Association for Cancer Research and its financial and material support in the development of the AACR Project GENIE registry, as well as members of the consortium for their commitment to data sharing. Interpretations of the GENIE data are the responsibility of the study authors.

Author information

Authors and Affiliations

Authors

Contributions

A.F., V.S., A.R., G.L.B., U.M. and A.A. wrote the manuscript. All authors researched data for the article, contributed to discussions of content, and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Alfredo Addeo.

Ethics declarations

Competing interests

A.F. has received personal fees from Amgen, Astellas, Bayer, Boehringer Ingelheim, Bristol Myers Squibb (BMS), Merck Sharp & Dohme (MSD), Pfizer and Roche. V.S. has received grants from and holds advisory board and/or consultant positions for Eli Lilly/Loxo Oncology. V.S. has also received research grants from Abbvie, Agensys, Alfasigma, Altum, Amgen, Bayer, Berghealth, Blueprint Medicines, Boston Biomedical, Boston Pharmaceuticals, Celgene, D3, Dragonfly Therapeutics, Exelixis, Fujifilm, GlaxoSmithKline, Idera Pharma, Incyte, Inhibrx, MedImmune, Multivir, Nanocarrier, the National Comprehensive Cancer Network, the National Cancer Institute Cancer Therapy Evaluation Program (CTEP), Northwest Biotherapeutics, Novartis, Pharmamar, Pfizer, Roche/Genentech, Takeda, The University of Texas MD Anderson Cancer Center, Turning Point Therapeutics and Vegenics; holds advisory board/consultant positions with Daiichi-Sankyo, Eisai, Helsinn, Incyte, MedImmune, Novartis, QED Pharma, Relay Therapeutics and Signant Health; has received travel funds from ASCO, ESMO, Incyte and Pharmamar; and has received educational seminar support from Medscape. A.R. has received personal fees for attending advisory board meetings from AstraZeneca, MSD and Novartis. G.L.B. has received personal fees from Boehringer Ingelheim, Janssen-Cilag and Roche. U.M. has received personal fees for participation in speakers bureaus and advisory roles from Amgen, AstraZeneca, BMS, Boehringer Ingelheim, Merck, MSD, Roche and Thermofisher. C.R. has received funding from the Lung Cancer Research Foundation-Pfizer Grant 2019. C.R. has also received personal fees for attending advisory board meetings from ArcherDx, BMS, Boston Pharmaceuticals, Inivata, MD Serono and Novartis; fees for speakers bureau from AstraZeneca, MSD and Roche; and non-financial support from GuardantHealth through a research collaboration. A.A. has received personal fees for attending advisory board meetings from Astellas, AstraZeneca, BMS, Boehringer Ingelheim, Eli Lilly, MSD, Pfizer and Roche; and for speakers bureaus from AstraZeneca, Eli Lilly and MSD.

Additional information

Peer review information

Nature Reviews Clinical Oncology thanks K. Park, who co-reviewed with S. Park; F. Cappuzzo; and S. Vyse for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

PDB 1M14: https://www.rcsb.org/structure/1M14

PDB 1XKK: https://www.rcsb.org/structure/1XKK

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedlaender, A., Subbiah, V., Russo, A. et al. EGFR and HER2 exon 20 insertions in solid tumours: from biology to treatment. Nat Rev Clin Oncol 19, 51–69 (2022). https://doi.org/10.1038/s41571-021-00558-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-021-00558-1

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer