Skip to main content
Log in

Recursive inductor core loss estimation method for arbitrary flux density waveforms

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

Estimating the core losses of magnetic materials is crucial for the electrical, thermal, and mechanical modeling of modern power electronic converters. Thus, there have been a number of methods proposed in the literature to estimate core losses. However, none of the existing works have introduced a method to estimate the core losses for arbitrary flux density waveforms by making use of manufacturer provided loss calculation parameters with a memory efficient algorithm. In this paper, existing core loss estimation methods are reviewed and a novel method is proposed to estimate the core losses under arbitrary voltage excitation by a modification of the improved Generalized Steinmetz Equation (iGSE) algorithm. The novel method is referred to as the Recursive Improved Generalized Steinmetz Equation (RiGSE) and its performance is experimentally verified for arbitrary flux density waveforms. The experimental verification of the proposed core loss estimating method is the only known example in the existing literature in terms of the evaluation of arbitrary flux density waveforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chen, Y., Pillay, P.: An improved formula for lamination core loss calculations in machines operating with high frequency and high flux density excitation. In: IEEE Industry Applications Conference, 37th IAS Annual Meeting, Pittsburgh, PA, USA, 2002, pp. 759–766

  2. Shen, W., Wang, F., Boroyevich, D., et al.: Loss characterization and calculation of nanocrystalline cores for high-frequency magnetics applications. IEEE Trans. Power Electron. 23(1), 475–484 (2008)

    Article  Google Scholar 

  3. Sullivan, C.R., Harris, J.H., Herbert, E.: Core loss predictions for general pwm waveforms from a simplified set of measured data. In: 25th Annual IEEE Applied Power Electronics Conference and Expo (APEC), Palm Springs, CA, 2010, pp. 1048–1055

  4. Reinert, J., Brockmeyer, A., De Doncker, R.W.: Calculation of losses in ferro- and ferrimagnetic materials based on the modified Steinmetz equation. IEEE Trans. Ind. Appl. 37(4), 1055–1061 (2001)

    Article  Google Scholar 

  5. Roshen, W.A.: A practical, accurate and very general core loss model for nonsinusoidal waveforms. IEEE Trans. Power Electron. 22(1), 30–40 (2007)

    Article  Google Scholar 

  6. Van den Bossche, A., Valchev, V.C., Georgiev, G.B.: Measurement and loss model of ferrites with non-sinusoidal waveforms. In: 35th Annual IEEE Power Electronics Specialists Conference, Aachen, Germany, 2004, pp. 4814–4818

  7. Li, J., Abdallah, T., Sullivan, C.R.: Improved Calculation of core loss with nonsinusoidal waveforms. In: IEEE Industry Applications Conference, 36th IAS Annual Meeting, Chicago, IL, USA, 2001, pp. 2203–2210

  8. Mühlethaler, J., Biela, J., Kolar, J.W., et al.: Improved core loss calculation for magnetic components employed in power electronic systems. IEEE Trans. Power Electron. 27(2), 964–973 (2012)

    Article  Google Scholar 

  9. Barg, S., Ammous, K., Mejbri, H., et al.: An improved empirical formulation for magnetic core losses estimation under nonsinusoidal induction. IEEE Trans. Power Electron. 32(3), 2146–2154 (2017)

    Article  Google Scholar 

  10. Bramerdorfer, G., Andessner, D.: Accurate and easy-to-obtain iron loss model for electric machine design. IEEE Trans. Ind. Electron. 64(3), 2530–2537 (2017)

    Article  Google Scholar 

  11. Zhao, H., Li, Y., Zheng, T.Q.: Study on a novel switching pattern current control scheme applied to three-phase voltage-source converters. J. Power Electron. 17(6), 1563–1576 (2017). https://doi.org/10.6113/JPE.2019.17.6.1563

    Article  Google Scholar 

  12. Durna, E., Yilmaz, I., Ermis, M.: Suppression of time varying interharmonics produced by medium-frequency induction melting furnaces by a HAPF system. IEEE Trans. Power Electron. 32(2), 1030–1044 (2017)

    Article  Google Scholar 

  13. Durna, E.: Adaptive fuzzy hysteresis band current control for reducing switching losses of hybrid active power filter. IET Power Electron. 11(5), 937–944 (2018)

    Article  Google Scholar 

  14. Khadem, S.K., Basu, M., Conlon, M.F.: Harmonic power compensation capacity of shunt active power filter and its relationship with design parameters. IET Power Electron. 7(2), 418–430 (2014)

    Article  Google Scholar 

  15. Steinmetz, C.P.: On the law of hysteresis. Proc. IEEE 72(2), 196–221 (1984)

    Article  Google Scholar 

  16. Yu, X., Li, Y., Yang, Q., et al.: Loss characteristics and model verification of soft magnetic composites under non-sinusoidal excitation. IEEE Trans. Magn. 55(2), 6100204 (2019)

    Google Scholar 

  17. Venkatachalam, K., Sullivan, C. R., Abdallah, T., et al.: Accurate prediction of ferrite core loss with nonsinusoidal waveforms using only Steinmetz parameters. In: Proceedings of IEEE Workshop Computer and Power Electronics, Mayaguez, Puerto Rico, 2002, pp. 36–41

  18. Jacoboski, M.J., Lange, A.B., Heldwein, M.L.: Closed-form solution for core loss calculation in single-phase bridgeless PFC rectifiers based on the iGSE method. IEEE Trans. Power Electron. 33(6), 4599–4604 (2018)

    Article  Google Scholar 

  19. Taitoda, T., Takahashi, Y., Fujiwara, K.: Iron loss estimation method for a general hysteresis loop with minor loops. IEEE Trans. Magn. 51(11), 8112304 (2015)

    Article  Google Scholar 

  20. Jia, W., Xiao, J., Zhu, D., et al.: An improved core-loss calculation method with variable coefficients based on equivalent frequency. IEEE Trans. Magn. 54(11), 6300505 (2018)

    Google Scholar 

  21. Graham, C.D., Jr.: Physical origin of losses in conducting ferromagnetic materials (invited). J. Appl. Phys. 53(11), 8276–8280 (1982)

    Article  Google Scholar 

  22. Bertotti, G.: General properties of power losses in soft ferromagnetic materials. IEEE Trans. Magn. 24(1), 621–630 (1988)

    Article  Google Scholar 

  23. Yan, Z., Ai-ming, S.: Simplified ferrite core loss separation model for switched mode power converter. IET Power Electron. 9(3), 529–535 (2016)

    Article  Google Scholar 

  24. Novak, G., Kokosar, J., Nagode, A., et al.: Core-loss prediction for non-oriented electrical steels based on the Steinmetz equation using fixed coefficients with a wide frequency range of validity. IEEE Trans. Magn 51(4), 2001507 (2015)

    Article  Google Scholar 

  25. Boglietti, A., Ferraris, P., Lazzari, M., et al.: Iron losses in magnetic materials with six-step and pwm inverter supply. IEEE Trans Magn. 27(6), 5334–5336 (1991)

    Article  Google Scholar 

  26. Brockmeyer, A., Albach, M., Dürbaum, T.: Remagnetization losses of ferrite materials used in power electronic applications. In: Proceedings of PCIM’96, Nurenberg, Germany, 1996, pp. 375–380

  27. Albach, M., Dürbaum, T., Brockmeyer, A.: Calculating core losses in transformers for arbitrary magnetization currents—a comparison of different approaches. In: Proceedings of IEEE PESC’96, Baveno, Italy, 1996, pp. 1463–1468

  28. Alsawalhi, J.Y., Sudhoff, S.D.: Saturable thermally-representative Steinmetz-based loss models. IEEE Trans. Magn. 49(11), 5438–5445 (2013)

    Article  Google Scholar 

  29. Yue, S., Li, Y., Yang, Q., et al.: Comparative analysis of core loss calculation methods for magnetic materials under nonsinusoidal excitations. IEEE Trans. Magn. 54(11), 6300605 (2018)

    Article  MathSciNet  Google Scholar 

  30. Ishikura, Y., Imaoka, Y., Noah, M., et al.: Improved core loss calculation method considering the non-uniform distribution of magnetic flux density in powder cores. IET Power Electron. 12(6), 1393–1399 (2019)

    Article  Google Scholar 

  31. Soltau, N., Eggers, D., Hameyer, K., et al.: Iron losses in a medium-frequency transformer operated in a high-power DC–DC Converter. IEEE Trans. Magn. 50(2), 7023604 (2014)

    Article  Google Scholar 

  32. Atkinson-Hope, G.: Relationship between harmonics and symmetrical components. Int. J. Eng. Educ. 41(2), 93–104 (2004)

    Article  Google Scholar 

  33. Yılmaz, I., Durna, E., Ermiş, M.: Design and implementation of a hybrid system for the mitigation of PQ problems of medium-frequency induction steel-melting furnaces. IEEE Trans. Ind. Appl. 52(3), 2700–2713 (2016)

    Article  Google Scholar 

  34. Tan, A., Bayındır, K.Ç., Cuma, M.U., et al.: Multiple harmonic elimination-based feedback controller for shunt hybrid active power filter. IET Power Electron. 10(8), 945–995 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emre Durna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durna, E. Recursive inductor core loss estimation method for arbitrary flux density waveforms. J. Power Electron. 21, 1724–1734 (2021). https://doi.org/10.1007/s43236-021-00312-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-021-00312-x

Keywords

Navigation