Skip to main content
Log in

Distribution of quinolone and macrolide resistance genes and their co-occurrence with heavy metal resistance genes in vegetable soils with long-term application of manure

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) has become an increasingly serious global public health issue. This study investigated the distribution characteristics and influencing factors of ARB and ARGs in greenhouse vegetable soils with long-term application of manure. Five typical ARGs, four heavy metal resistance genes (MRGs), and two mobile genetic elements (MGEs) were quantified by real-time quantitative polymerase chain reaction (qPCR). The amount of ARB in manure-improved soil greatly exceeded that in control soil, and the bacterial resistance rate decreased significantly with increases in antibiotic concentrations. In addition, the resistance rate of ARB to enrofloxacin (ENR) was lower than that of tylosin (TYL). Real-time qPCR results showed that long-term application of manure enhanced the relative abundance of ARGs in vegetable soils, and the content and proportion of quinolone resistance genes were higher than those of macrolide resistance genes. Redundancy analysis (RDA) showed that qepA and qnrS significantly correlated with total and available amounts of Cu and Zn, highlighting that certain heavy metals can influence persistence of ARGs. Integrase gene intI1 correlated significantly with the relative abundance of qepA, qnrS, and ermF, suggesting that intI1 played an important role in the horizontal transfer of ARGs. Furthermore, there was a weakly but not significantly positive correlation between specific detected MRGs and ARGs and MGEs. The results of this study enhance understanding the potential for increasing ARGs in manure-applied soil, assessing ecological risk and reducing the spread of ARGs.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aarestrup, F. (2012). Sustainable farming: Get pigs off antibiotics. Nature, 486(7404), 465–466.

    CAS  Google Scholar 

  • Amano, J., Hase, R., Otsuka, Y., Tsuchimochi, T., Noguchi, Y., & Igarashi, S. (2019). Catheter-related bloodstream infection by Microbacterium paraoxydans in a pediatric patient with B-cell precursor acute lymphocytic leukemia: A case report and review of literature on Microbacterium bacteremia. Journal of Infection and Chemotherapy, 25(10), 806–810.

    CAS  Google Scholar 

  • Ashbolt, N. J., Amézquita, A., Backhaus, T., Borriello, Peter, Brandt, K. K., Collignon, P., Coors, A., Finley, R., Gaze, W. H., Heberer, T., Lawrence, J. R., Joakim Larsson, D. G., McEwen, S. A., Ryan, J. J., Schönfeld, J., Silley, P., Snape, J. R., Van den Eede, C., & Topp, E. (2013). Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environmental Health Perspectives, 121, 993–1001.

    Google Scholar 

  • Bai, Z., Ma, W., Ma, L., Velthof, G. L., Wei, Z., Havlík, P., Oenema, Oene, Lee, M. R. F., & Zhan, F. (2018). China’s livestock transition: Driving forces, impacts, and consequences. Science Advances, 4(7), eaar8534.

    CAS  Google Scholar 

  • Bengtsson-Palme, J., Kristiansson, E., & Larsson, D. G. J. (2018). Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiology Reviews, 42(1), 68–80.

    CAS  Google Scholar 

  • Besaury, L., Bodilis, J., Delgas, F., Andrade, S., De la Iglesia, R., Ouddane, B., & Quillet, L. (2013). Allowance and diversity of copper resistance genes cusA and copA in micro communities in relation to the impact of copper on Chilean marine segments. Marine Pollution Bulletin, 67(1–2), 16–25.

    Article  CAS  Google Scholar 

  • Besaury, L., Pawlak, B., & Quillet, L. (2016). Expression of copper-resistance genes in microbial communities under copper stress and oxic/anoxic conditions. Environmental Science and Pollution Research, 23(5), 4013–4023.

    CAS  Google Scholar 

  • Bolan, N. S., Adriano, D. C., & Mahimairaja, S. (2004). Distribution and bioavailability of trace elements in livestock and poultry manure by-products. Environmental Science & Technology, 34(3), 291–338.

    CAS  Google Scholar 

  • Cang, L., Wang, Y. J., Zhou, D. M., & Dong, Y. H. (2004). Heavy metals pollution in poultry and livestock feeds and manures under intensive farming in Jiangsu Province China. Journal of Environmental Sciences, 16(3), 371–374.

    CAS  Google Scholar 

  • Cheng, J. J., Ding, C. F., Li, X. G., Zhang, T. L., & Wang, X. X. (2016). Soil quality evaluation for navel orange production systems in central subtropical China. Soil and Tillage Research, 155, 225–232.

    Google Scholar 

  • Cummings, D. E., Archer, K. F., Arriola, D. J., Baker, P. A., Grace Faucett, K., Laroya, J. B., Pfeil, K. L., Ryan, C. R., Ryan, K. R. U., & Zuill, D. E. (2011). Broad dissemination of plasmid-mediated quinolone resistance genes in sediments of two urban coastal wetlands. Environmental Science & Technology, 45(2), 447–454.

    CAS  Google Scholar 

  • Dai, M. X., Zhou, G. Q., Ng, H. Y., Zhang, J. Y., Wang, Y., Li, N., et al. (2019). Diversity evolution of functional bacteria and resistance genes (CzcA) in aerobic activated sludge under Cd (II) stress. Journal Environmental Management, 250, 109519.

    CAS  Google Scholar 

  • Darmon, E., & Leach, D. R. F. (2014). Bacterial Genome Instability. Microbiology and Molecular Biology Reviews, 78(1), 1–39.

    Google Scholar 

  • Di Cesare, A., Eckert, E. M., D’Urso, S., Bertoni, R., Gillan, D. C., Wattiez, R., & Corno, G. (2016). Co-occurrence of integrase 1, antibiotic and heavy metal resistance genes in municipal wastewater treatment plants. Water Research, 94, 208–214.

    Google Scholar 

  • Shuai, D., Shen, J.-P., Hang-Wei, H., Wang, J.-T., Han, L.-L., Sheng, R., Wei, W.-X., Fang, Y.-T., Zhu, Y.-G., Zhang, L.-M., & He, Ji-Zheng. (2020). Large-scale patterns of soil antibiotic resistome in Chinese croplands. Science of The Total Environment, 712, 136418.

    Google Scholar 

  • Duan, M., Jie, G., Wang, X., Li, Y., Zhang, R., Ting, H., & Zhou, B. (2019). Factors that affect the occurrence and distribution of antibiotic resistance genes in soils from livestock and poultry farms. Ecotoxicology and Environmental Safety, 180, 114–122.

    CAS  Google Scholar 

  • Fang, H., Wang, H. F., Cai, L., & Yu, Y. L. (2015). Prevalence of antibiotic resistance genes and bacterial pathogens in long-term manured greenhouse soils as revealed by metagenomic survey. Environmental Science & Technology, 49(2), 1095–1104.

    CAS  Google Scholar 

  • Forsberg, K. J., Reyes, A., Wang, B., Selleck, E. M., Sommer, M. O. A., & Dantas, G. (2012). The shared antibiotic resistome of soil bacteria and human pathogens. Science, 337(6098), 1107–1111.

    CAS  Google Scholar 

  • Gao, L., Hu, J., Zhang, X., Wei, L., Li, S., Miao, Z., & Chai, T. (2015). Application of swine manure on agricultural fields contributes to extended-spectrum β-lactamase-producing Escherichia coli spread in Tai’an China. Frontiers in Microbiology, 6, 313.

    Google Scholar 

  • García, J., García-Galán, M. J., Day, J. W., Boopathy, R., White, J. R., Wallace, S., & Hunter, R. G. (2020). A review of emerging organic contaminants (EOCs), antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in the environment: Increasing removal with wetlands and reducing environmental impacts. Bioresource Technology, 307, 123228.

    Google Scholar 

  • Gillings, M., Boucher, Y., Labbate, M., Holmes, A., Krishnan, S., Holley, M., & Stokes, H. W. (2008). The evolution of class 1 integrons and the rise of antibiotic resistance. Journal of Bacteriology, 190(14), 5095–5100.

    CAS  Google Scholar 

  • Gillings, M. R., Gaze, W. H., Pruden, A., Smalla, K., Tiedje, J. M., & Zhu, Y. G. (2015). Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME Journal, 9(6), 1269–1279.

    CAS  Google Scholar 

  • Gu, D. M., Guo, C. S., Hou, S., Lv, J. P., Zhang, Y., Yuan, S., & Zhao, Xin. (2019). Occurrence and risk assessment of antibiotics in manure, soil, wastewater, groundwater from livestock and poultry farms in Xuzhou, China. Bulletin of Environmental Contamination Toxicology, 103, 590–596.

    CAS  Google Scholar 

  • Gudda, F. O., Waigi, M. G., Odinga, E. S., Yang, B., Carter, L., & Gao, Y. Z. (2020). Antibiotic-contaminated wastewater irrigated vegetables pose resistance selection risks to the gut microbiome. Environmental Pollution, 264, 114752.

    CAS  Google Scholar 

  • Guo, H., Jie, G., Wang, X., Jing, Y., Nasir, M., Peng, H., Zhang, R., Ting, Hu., Wang, Q., & Ma, J. (2019). Responses of antibiotic and heavy metal resistance genes to bamboo charcoal and bamboo vinegar during aerobic composting. Environmental Pollution, 252, 1097–1105.

    CAS  Google Scholar 

  • Guo, T., Lou, C., Zhai, W., Tang, X., Hashmi, M. Z., Murtaza, R., Li, Y., Liu, X., & Jianming, X. (2018). Increased occurrence of heavy metals, antibiotics and resistance genes in surface soil after long-term application of manure. Science of The Total Environment, 635, 995–1003.

    CAS  Google Scholar 

  • He, X., Yanbin, X., Chen, J., Ling, J., Yafei Li, L., Huang, X. Z., Zheng, L., & Xie, G. (2017). Evolution of corresponding resistance genes in the water of fish tanks with multiple stresses of antibiotics and heavy metals. Water Research, 124, 39–48.

    CAS  Google Scholar 

  • Heuer, H., Schmitt, H., & Smalla, K. (2011). Antibiotic resistance gene spread due to manure application on agricultural fields. Current Opinion in Microbiology, 14(3), 236–243.

    CAS  Google Scholar 

  • Hou, J., Wan, W., Mao, D., Wang, C., Quanhua, M., Qin, S., & Luo, Y. (2015). Occurrence and distribution of sulfonamides, tetracyclines, quinolones, macrolides, and nitrofurans in livestock manure and amended soils of Northern China. Environmental Science and Pollution Research, 22(6), 4545–4554.

    CAS  Google Scholar 

  • Hang-Wei, H., Wang, J.-T., Li, J., Li, J.-J., Ma, Y.-B., Chen, D., & He, J.-Z. (2016). Field-based evidence for copper contamination induced changes of antibiotic resistance in agricultural soils. Environmental Microbiology, 18(11), 3896–3909.

    Google Scholar 

  • Hu, X. G., Zhou, Q. X., & Luo, Y. (2010). Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environmental Pollution, 158(9), 2992–2998.

    CAS  Google Scholar 

  • Huddleston, J. R. (2014). Horizontal gene transfer in the human gastrointestinal tract: Potential spread of antibiotic resistance genes. Infection and Drug Resistance, 7, 167–176.

    Google Scholar 

  • Huyan, J., Tian, Z., Zhang, Y., Zhang, H., Shi, Y., Gillings, M. R., & Yang, M. (2020). Dynamics of class 1 integrons in aerobic biofilm reactors spiked with antibiotics. Environment International, 140, 105816.

    CAS  Google Scholar 

  • Jang, H. M., Lee, J., Choi, S., Shin, J., Kan, E., & Mo Kim, Y. (2018). Response of antibiotic and heavy metal resistance genes to two different temperature sequences in anaerobic digestion of waste activated sludge. Bioresource Technology, 267, 303–310.

    CAS  Google Scholar 

  • Jechalke, S., Kopmann, C., Rosendahl, I., Groeneweg, J., Weichelt, V., Krögerrecklenfort, E., Brandes, N., Nordwig, M., Ding, G.-C., Siemens, J., Heuer, H., & Smalla, K. (2013). Increased abundance and transferability of resistance genes after field application of manure from sulfadiazine-treated pigs. Applied and Environmental Microbiology, 79(5), 1704–1711.

    CAS  Google Scholar 

  • Ji, X., Shen, Q., Liu, F., Ma, J., Xu, G., Wang, Y., & Wu, M. (2012). Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China. Journal of Hazardous Materials, 235–236, 178–185.

    Google Scholar 

  • Karkman, A., Do, T. T., Walsh, F., & Virta, M. P. J. (2017). Antibiotic-resistance genes in waste water. Trends in Microbiology, 26(3), 220–228.

    Google Scholar 

  • Kline, A., & Pinckney, J. L. (2016). Size-selective toxicity effects of the antimicrobial tylosin on estuarine phytoplankton communities. Environmental Pollution, 216, 806–810.

    CAS  Google Scholar 

  • Li, J., Xin, Z., Zhang, Y., Chen, J., Yan, J., Li, H., & Hangwei, H. (2017). Long-term manure application increased the levels of antibiotics and antibiotic resistance genes in a greenhouse soil. Applied Soil Ecology, 121, 193–200.

    Google Scholar 

  • Li, J., Xu, Y., Wang, L. Q., & Li, F. D. (2019). Heavy metal occurrence and risk assessment in dairy feeds and manures from the typical intensive dairy farms in China. Environmental Science and Pollution Research, 26(7), 6348–6358.

    CAS  Google Scholar 

  • Li, Y., McCrory, D. F., Powell, J. M., Saam, H., & Jackson-Smith, D. (2005). A survey of selected heavy metal concentrations in Wisconsin dairy feeds. Journal of Dairy Science, 88(8), 2911–2922.

    CAS  Google Scholar 

  • Li, Y. W., Wu, X. L., Mo, C. H., Tai, L. P., Huang, X. P., & Xiang, L. (2011). Investigation of sulfonamide, tetracycline, and quinolone antibiotics in vegetable farmland soil in the Pearl River Delta area, southern China. Journal of Agricultural and Food Chemistry, 59(13), 7268–7276.

    Google Scholar 

  • Liu, K., Sun, M., Ye, M., Chao, H., Zhao, Y., Xia, B., Jiao, W., Feng, Y., Zheng, X., Liu, M., Jiao, J., & Feng, Hu. (2019). Coexistence and association between heavy metals, tetracycline and corresponding resistance genes in vermicomposts originating from different substrates. Environmental Pollution, 244, 28–37.

    CAS  Google Scholar 

  • Liu, W. R., Zeng, D., She, L., Su, W. X., He, D. C., Wu, G. Y., & Ying, G. G. (2020). Comparisons of pollution characteristics, emission situations, and mass loads for heavy metals in the manures of different livestock and poultry in China. Science of The Total Environment, 734, 139023.

    CAS  Google Scholar 

  • Lu, X. M., Lu, P. Z., Chen, J. J., Zhang, H., & Fu, J. (2015). Effect of passivator on Cu form transformation in pig manure aerobic composting and application in soil. Environmental Science and Pollution Research, 22, 14727–14737.

    CAS  Google Scholar 

  • Luo, G., Li, B., Li, L. G., Zhang, T., & Angelidaki, I. (2017). Antibiotic resistance genes and correlations with microbial community and metal resistance genes in full-scale biogas reactors as revealed by metagenomic analysis. Environmental Science & Technology, 51(7), 4069–4080.

    CAS  Google Scholar 

  • Luo, Y., Mao, D., Rysz, M., Zhou, Q., Zhang, H., Lin, X., & Alvarez, P. J. J. (2010). Trends in antibiotic resistance genes occurrence in the Haihe River, China. Environmental Science & Technology, 44(19), 7220–7225.

    Google Scholar 

  • Mao, D. Q., Luo, Y., Mathieu, J., Wang, Q., Feng, L., Mu, Q. H., Chunyan, F., & Alvarez, P. J. J. (2014). Persistence of extracellular DNA in river sediment facilitates antibiotic resistance gene propagation. Environmental Science & Technology, 48(1), 71–78.

    CAS  Google Scholar 

  • McKinney, C. W., Loftin, K. A., Meyer, M. T., Davis, J. G., & Pruden, A. (2010). tet and sul antibiotic resistance genes in livestock lagoons of various operation type, configuration, and antibiotic occurrence. Environmental Science & Technology, 44(16), 6102–6109.

    CAS  Google Scholar 

  • Meng, L. W., Wang, J. C., Li, X. K., & Cui, F. G. (2020). Insight into effect of high-level cephalexin on fate and driver mechanism of antibiotics resistance genes in antibiotic wastewater treatment system. Ecotoxicology and Environmental Safety, 201, 110739.

    CAS  Google Scholar 

  • Mu, Q. H., Li, J., Sun, Y. X., Mao, D. Q., Wang, Q., & Luo, Y. (2015). Occurrence of sulfonamide-, tetracycline-, plasmid-mediated quinolone- and macrolide-resistance genes in livestock feedlots in Northern China. Environmental Science and Pollution Research, 22(9), 6932–6940.

    CAS  Google Scholar 

  • Negreanu, Y., Pasternak, Z., Jurkevitch, E., & Cytryn, E. (2012). Impact of treated wastewater irrigation on antibiotic resistance in agricultural soils. Environmental Science & Technology, 46(9), 4800–4808.

    CAS  Google Scholar 

  • Nõlvak, H., Truu, M., Oopkaup, K., Kanger, K., Krustok, I., Nehrenheim, E., & Truu, J. (2018). Reduction of antibiotic resistome and integron-integrase genes in laboratory-scale photobioreactors treating municipal wastewater. Water Research, 142, 363–372.

    Google Scholar 

  • Pal, C., Bengtsson-Palme, J., Kristiansson, E., & Larsson, D. G. J. (2015). Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics, 16, 964.

    Google Scholar 

  • Partridge, S. R., Tsafnat, G., Coiera, E., & Iredell, J. R. (2009). Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiology Reviews, 33(4), 757–784.

    CAS  Google Scholar 

  • Partridge, S. R., Kwong, S. M., Firth, N., & Jensen, S. O. (2018). Mobile genetic elements associated with antimicrobial resistance. Clinical Microbiology Reviews, 31(4), e00088-e117.

    CAS  Google Scholar 

  • Peng, F. J., Zhou, L. J., Ying, G. G., Liu, Y. S., & Zhao, J. L. (2014). Antibacterial activity of the soil-bound antimicrobials oxytetracycline and ofloxacin. Environmental Toxicology and Chemistry, 33(4), 776–783.

    CAS  Google Scholar 

  • Pérez, R. A., Albero, B., Férriz, M., & Tadeo, J. L. (2017). Analysis of macrolide antibiotics in water by magnetic solid-phase extraction and liquid chromatography-tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 146, 79–85.

    Google Scholar 

  • Pu, Q., Zhao, L. X., Li, Y. T., & Su, J. Q. (2020). Manure fertilization increase antibiotic resistance in soils from typical greenhouse vegetable production bases China. Journal of Hazardous Materials, 391, 122267.

    CAS  Google Scholar 

  • Puckowski, A., Mioduszewska, K., Łukaszewicz, P., Borecka, M., Caban, M., Maszkowska, J., & Stepnowski, P. (2016). Bioaccumulation and analytics of pharmaceutical residues in the environment: A review. Journal of Pharmaceutical and Biomedical Analysis, 127, 232–255.

    CAS  Google Scholar 

  • Qian, M., Huizhen, Wu., Jianmei Wang, H., Zhang, Z. Z., Zhang, Y., Lin, H., & Ma, J. (2016). Occurrence of trace elements and antibiotics in manure-based fertilizers from the Zhejiang Province of China. Science of The Total Environment, 559, 174–181.

    CAS  Google Scholar 

  • Qiao, M., Ying, G. G., Singer, A. C., & Zhu, Y. G. (2018). Review of antibiotic resistance in China and its environment. Environment International, 110, 160–172.

    CAS  Google Scholar 

  • Rahman, M. M., Shan, J., Yang, P. P., Shang, X. X., Xia, Y. Q., & Yan, X. Y. (2018). Effects of long-term pig manure application on antibiotics, abundance of antibiotic resistance genes (ARGs), anammox and denitrification rates in paddy soils. Environmental Pollution, 240, 368–377.

    CAS  Google Scholar 

  • Rajkumar, M., Ma, Y., & Freitas, H. (2013). Improvement of Ni phytostabilization by inoculation of Ni resistant Bacillus megaterium SR28C. Journal Environmental Management, 128, 973–980.

    CAS  Google Scholar 

  • Roberto, A. A., Van Gray, J. B., Engohang-Ndong, J., & Leff, L. J. (2019). Distribution and co-occurrence of antibiotic and metal resistance genes in biofilms of an anthropogenically impacted stream. Science of the Total Environment, 688, 437–449.

    CAS  Google Scholar 

  • Roosa, S., Wattiez, R., Prygiel, E., Lesven, L., Billon, G., & Gillan, D. C. (2014). Bacterial metal resistance genes and metal bioavailability in contaminated sediments. Environmental Pollution, 189, 143–151.

    CAS  Google Scholar 

  • Seiler, C., & Berendonk, T. U. (2012). Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Frontiers in Microbiology, 3, 399.

    Google Scholar 

  • Soucy, S. M., Huang, J. L., & Gogarten, J. P. (2015). Horizontal gene transfer: Building the web of life. Nature Reviews Genetics, 16(8), 472–482.

    CAS  Google Scholar 

  • Hao-Chang, S., Pan, C.-G., Ying, G.-G., Zhao, J.-L., Zhou, L.-J., Liu, Y.-S., Tao, R., Zhang, R.-Q., & He, L.-Y. (2014). Contamination profiles of antibiotic resistance genes in the sediments at a catchment scale. Science of The Total Environment, 490, 708–714.

    Google Scholar 

  • Su, J. Q., Wei, B., Xu, C. Y., Qiao, M., & Zhu, Y. G. (2014a). Functional metagenomic characterization of antibiotic resistance genes in agricultural soils from China. Environment International, 65, 9–15.

    CAS  Google Scholar 

  • Tang, X., Lou, C., Wang, S., Yanhong, L., Liu, M., Hashmi, M. Z., Liang, X., Li, Z., Liao, Y., Qin, W., Fan, F., Jianming, Xu., & Brookes, P. C. (2015). Effects of long-term manure applications on the occurrence of antibiotics and antibiotic resistance genes (ARGs) in paddy soils: Evidence from four field experiments in south of China. Soil Biology & Biochemistry, 90, 179–187.

    CAS  Google Scholar 

  • Tien, Y.-C., Li, B., Zhang, T., Scott, A., Murray, R., Sabourin, L., Marti, R., & Topp, E. (2017). Impact of dairy manure pre-application treatment on manure composition, soil dynamics of antibiotic resistance genes, and abundance of antibiotic-resistance genes on vegetables at harvest. Science of The Total Environment, 581–582, 32–39.

    Google Scholar 

  • Vikesland, P. J., Pruden, A., Alvarez, P. J. J., Aga, D., Bürgmann, H., Li, X. D., et al. (2017). Towards a comprehensive strategy to mitigate dissemination of environmental sources of antibiotic resistance. Environmental Science & Technology, 54(22), 13061–13069.

    Google Scholar 

  • Wang, J. H., Wang, L. J., Zhu, L. S., Wang, J., & Xing, B. S. (2020). Antibiotic resistance in agricultural soils: Source, fate, mechanism and attenuation strategy. Critical Reviews in Environmental Science and Technology. https://doi.org/10.1080/10643389.2020.1835438

    Article  Google Scholar 

  • Wang, J. L., Liu, J. Z., Chen, Z. L., & Kuang, Y. B. (2005). Effects of enrofloxacin residues on the functions of soil microbes. Acta Ecologica Sinica, 25, 279–282.

    CAS  Google Scholar 

  • Wang, L. J., Wang, J., Wang, J. H., Zhu, L. S., Yang, L. L., & Yang, R. (2019). Distribution characteristics of antibiotic resistant bacteria and genes in fresh and composted manures of livestock farms. Science of The Total Environment, 695, 133781.

    CAS  Google Scholar 

  • Wang, L. J., Wang, J. H., Wang, J., Zhu, L. S., Conkle, J. L., & Yang, R. (2020). Soil types influence the characteristic of antibiotic resistance genes in greenhouse soil with long-term manure application. Journal of Hazardous Materials, 392, 122334.

    CAS  Google Scholar 

  • Wang, L., Xia, X., Zhang, W., Wang, J., Zhu, L., Wang, J., Wei, Z., & Ahmad, Z. (2019). Separate and joint eco-toxicological effects of sulfadimidine and copper on soil microbial biomasses and ammoxidation microorganisms abundances. Chemosphere, 228, 556–564.

    CAS  Google Scholar 

  • Wang, L. J., Zhao, X., Wang, J. H., Wang, J., Zhu, L. S., & Ge, W. L. (2019). Macrolide- and quinolone-resistant bacteria and resistance genes as indicators of antibiotic resistance gene contamination in farmland soil with manure application. Ecological Indicators, 106, 105456.

    CAS  Google Scholar 

  • Wellington, E. M. H., Boxall, A. B. A., Cross, P., Feil, E. J., Gaze, W. H., Hawkey, P. M., Johnson-Rollings, A. S., Jones, D. L., Lee, N. M., Otten, W., Thomas, C. M., & PrysorWilliams, A. (2013). The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. The Lancet Infectious Diseases, 13(2), 155–165.

    CAS  Google Scholar 

  • Wu, H.-y, Shi, D.-y, Yang, D., Yin, J., Yang, Z.-w, Li, J.-w, Yang, W., & Jin, M. (2020). Putative environmental levels of levofloxacin facilitate the dissemination of antibiotic-resistant Escherichia coli via plasmid-mediated transformability. Ecotoxicology and Environmental Safety, 195, 110461.

    CAS  Google Scholar 

  • Wu, N., Qiao, M., Zhang, B., Cheng, W. D., & Zhu, Y. G. (2010). Abundance and diversity of tetracycline resistance genes in soils adjacent to representative swine feedlots in China. Environmental Science & Technology, 44(18), 6933–6939.

    CAS  Google Scholar 

  • Xie, W. Y., Shen, Q., & Zhao, F. J. (2018). Antibiotics and antibiotic resistance from animal manures to soil: A review. European Journal of Soil Science, 69(1), 181–195.

    Google Scholar 

  • Xu, Y. G., Yu, W. T., Ma, Q., & Zhou, H. (2015). Occurrence of (fluoro)quinolones and (fluoro)quinolone resistance in soil receiving swine manure for 11 years. Science of the Total Environment, 530–531, 191–197.

    Google Scholar 

  • Yang, Q. E., Agouri, S. R., Tyrrell, J. M., & Walsh, T. R. (2018). Heavy metal resistance genes are associated with blaNDM-1- and blaCTX-M-15- Carrying Enterobacteriaceae. Antimicrobial Agents and Chemotherapy, 62(5), e02642-e2717.

    CAS  Google Scholar 

  • Yang, Q. X., Tian, T. T., Niu, T. Q., & Wang, P. L. (2017b). Molecular characterization of antibiotic resistance in cultivable multidrug-resistant bacteria from livestock manure. Environmental Pollution, 229, 188–198.

    CAS  Google Scholar 

  • Yang, R., Xia, X., Wang, J., Zhu, L., Wang, J., Ahmad, Z., Yang, L., Mao, S., & Chen, Y. (2020). Dose and time-dependent response of single and combined artificial contamination of sulfamethazine and copper on soil enzymatic activities. Chemosphere, 250, 126161.

    CAS  Google Scholar 

  • Yang, X., Li, Q., Tang, Z., Zhang, W., Guanghui, Y., Shen, Q., & Zhao, F.-J. (2017). Heavy metal concentrations and arsenic speciation in animal manure composts in China. Waste Management, 64, 333–339.

    CAS  Google Scholar 

  • Yao, X., Zhu, X., Pan, S., Fang, Y., Jiang, F., Phillips, G. O., & Xiaoyun, X. (2012). Antimicrobial activity of nobiletin and tangeretin against Pseudomonas. Food Chemistry, 132(4), 1883–1890.

    CAS  Google Scholar 

  • Yi, X. Z., Wang, M., & Zhou, Z. (2019). The potential impact of naturally produced antibiotics, environmental factors, and anthropogenic pressure on the occurrence of erm genes in urban soils. Environmental Pollution, 245, 282–289.

    CAS  Google Scholar 

  • You, Y. Q., & Silbergeld, E. K. (2014). Learning from agriculture: Understanding low-dose antimicrobials as drivers of resistome expansion. Frontiers in Microbiology, 5, 284.

    Google Scholar 

  • Zarei-Baygi, A., & Smith, A. L. (2021). Intracellular versus extracellular antibiotic resistance genes in the environment: Prevalence, horizontal transfer, and mitigation strategies. Bioresource Technology, 319, 124181.

    CAS  Google Scholar 

  • Zhang, B., Wang, M. M., Wang, B., Xin, Y. J., Gao, J. Q., & Liu, H. L. (2018a). The effects of bio-available copper on macrolide antibiotic resistance genes and mobile elements during tylosin fermentation dregs co-composting. Bioresource Technology, 251, 230–237.

    CAS  Google Scholar 

  • Zhang, J. Y., Chen, M. X., Sui, Q. W., Tong, J., Jiang, C., Lu, X. T., et al. (2016). Impacts of addition of natural zeolite or a nitrification inhibitor on antibiotic resistance genes during sludge composting. Water Research, 91, 339–349.

    CAS  Google Scholar 

  • Zhang, X. H., Tang, S., Wang, M., Sun, W. M., Xie, Y. W., Peng, H., et al. (2019). Acid mine drainage affects the diversity and metal resistance gene profile of sediment bacterial community along a river. Chemosphere, 217, 790–799.

    CAS  Google Scholar 

  • Zhang, Y. J., Hu, H. W., Gou, M., Wang, J. T., Chen, D. L., & He, J. Z. (2017). Temporal succession of soil antibiotic resistance genes following application of swine, cattle and poultry manures spiked with or without antibiotics. Environmental Pollution, 231, 1621–1632.

    CAS  Google Scholar 

  • Zhang, Y. X., Lu, J., Wu, J., Wang, J. H., & Luo, Y. M. (2020). Potential risks of microplastics combined with superbugs: enrichment of antibiotic resistant bacteria on the surface of microplastics in mariculture system. Ecotoxicology and Environmental Safety, 187, 109852.

    CAS  Google Scholar 

  • Zhang, Y., Gu, A. Z., Cen, T., Li, X., He, M., Li, D., & Chen, J. (2018). Sub-inhibitory concentrations of heavy metals facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes in water environment. Environmental Pollution, 237, 74–82.

    CAS  Google Scholar 

  • Zhao, L., Dong, Y. H., & Wang, H. (2010). Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. Science of the Total Environment, 408(5), 1069–1075.

    CAS  Google Scholar 

  • Zhao, X., Wang, J. H., Zhu, L. S., & Wang, J. (2019a). Field-based evidence for enrichment of antibiotic resistance genes and mobile genetic elements in manure-amended vegetable soils. Science of the Total Environment, 654, 906–913.

    CAS  Google Scholar 

  • Zhao, X., Wang, J. H., Zhu, L. S., Ge, W. L., & Wang, J. (2017). Environmental analysis of typical antibiotic-resistant bacteria and ARGs in farmland soil chronically fertilized with chicken manure. Science of the Total Environment, 593–594, 10–17.

    Google Scholar 

  • Zhao, Yi., Cocerva, T., Cox, S., Tardif, S., Jian-Qiang, S., Zhu, Y.-G., & Brandt, K. K. (2019). Evidence for co-selection of antibiotic resistance genes and mobile genetic elements in metal polluted urban soils. Science of The Total Environment, 656, 512–520.

    CAS  Google Scholar 

  • Zhou, B., Wang, C., Zhao, Q., Wang, Y., Huo, M., Wang, J., & Wang, S. (2016). Prevalence and dissemination of antibiotic resistance genes and coselection of heavy metals in Chinese dairy farms. Journal of Hazardous Materials, 320, 10–17.

    CAS  Google Scholar 

  • Zhou, L.-J., Ying, G.-G., Liu, S., Zhang, R.-Q., Lai, H.-J., Chen, Z.-F., & Pan, C.-G. (2013). Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle farms in China. Science of The Total Environment, 444, 183–195.

    CAS  Google Scholar 

  • Zhou, S. Y. D., Zhu, D., Giles, M., Daniell, T., Neilson, R., & Yang, X. R. (2020). Does reduced usage of antibiotics in livestock production mitigate the spread of antibiotic resistance in soil, earthworm guts, and the phyllosphere? Environment International, 136, 105359.

    CAS  Google Scholar 

  • Zhou, X., Qiao, M., Wang, F. H., & Zhu, Y. G. (2016a). Use of commercial organic fertilizer increases the abundance of antibiotic resistance genes and antibiotics in soil. Environmental Science and Pollution Research, 24(1), 701–710.

    Google Scholar 

  • Zhu, Y.-G., Johnson, T. A., Jian-Qiang, S., Qiao, M., Guo, G.-X., Stedtfeld, R. D., Hashsham, S. A., & Tiedje, J. M. (2013). Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proceedings of the National Academy of Sciences of the United States of America, 110(9), 3435–3440.

    CAS  Google Scholar 

  • Zhu, Y.-G., Zhao, Yi., Li, B., Huang, C.-L., Zhang, S.-u, Shen, Y., Chen, Y.-S., Zhang, T., Gillings, M. R., & Jian-Qiang, S. (2017). Continental-scale pollution of estuaries with antibiotic resistance genes. Nature Microbiology, 2(4), 16270.

    CAS  Google Scholar 

  • Zhuang, P., Zou, B., Li, N. Y., & Li, Z. A. (2009). Heavy metal contamination in soils and food crops around Dabaoshan mine in Guangdong, China: Implication for human health. Environmental Geochemistry & Health, 31(6), 707–715.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [grant number 41671320], the Natural Science Foundation of Shandong Province, China [ZR2016JL029] and the Special Funds of Taishan Scholar of Shandong Province, China [grant numbers JQ201711].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhua Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could appear to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 34 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Z., Wang, J., Wang, L. et al. Distribution of quinolone and macrolide resistance genes and their co-occurrence with heavy metal resistance genes in vegetable soils with long-term application of manure. Environ Geochem Health 44, 3343–3358 (2022). https://doi.org/10.1007/s10653-021-01102-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-01102-x

Keywords

Navigation