Skip to main content

Advertisement

Log in

Antagonistic Roles of Gallates and Ascorbic Acid in Pyomelanin Biosynthesis of Pseudomonas aeruginosa Biofilms

  • Short Communication
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Primarily synthesized for chelating metal ions from the surrounding media, the pyomelanin plays an important role in bacterial virulence where it is needed for infection and biofilm formation as well as protection from host immune response. In this study, two out of three phenolic acids, gallic acid, and propyl gallate induced pyomelanin in two clinical isolates of Pseudomonas aeruginosa and inhibited biofilm formation. Ascorbic acid treatment reversed the gallic acid and propyl gallate mediated pyomelanin synthesis without reversing the inhibition of the biofilm formation. mRNA expression study revealed the upregulation of homogentisic acid oxidase enzyme by ascorbic acid treatment, possibly contributing towards the inhibition of pyomelanin synthesis. Tannic acid did not show any antibacterial or pyomelanin-induction activities. The synergistic effect of gallates and ascorbic acid in the inhibition of biofilm formation and associated pyomelanin synthesis was evidenced which needs further studies to establish their antibacterial efficacies, especially against the clinical isolates of Pseudomonas sp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability

Yes.

Code Availability

Not applicable.

Abbreviations

AA:

Ascorbic acid

TA:

Tannic acid

GA:

Gallic acid

PG:

Propyl gallate

HPPD:

4-Hydroxyphenylpyruvate dioxygenase

HMG:

Homogentisic acid

HmgA:

Homogentisate 1,2-dioxygenase

References

  1. Silby MW, Winstanley C, Godfrey SAC et al (2011) Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev 35:652–680. https://doi.org/10.1111/j.1574-6976.2011.00269.x

    Article  CAS  PubMed  Google Scholar 

  2. McIsaac SM, Stadnyk AW, Lin T-J (2012) Toll-like receptors in the host defense against Pseudomonas aeruginosa respiratory infection and cystic fibrosis. J Leukoc Biol 92:977–985. https://doi.org/10.1189/jlb.0811410

    Article  CAS  PubMed  Google Scholar 

  3. Wang S, Xiang D, Tian F, Ni M (2021) Lipopolysaccharide from biofilm-forming Pseudomonas aeruginosa PAO1 induces macrophage hyperinflammatory responses. J Med Microbiol. https://doi.org/10.1099/jmm.0.001352

    Article  PubMed  PubMed Central  Google Scholar 

  4. Livermore DM (2004) The need for new antibiotics. Clin Microbiol Infect 10(Suppl 4):1–9. https://doi.org/10.1111/j.1465-0691.2004.1004.x

    Article  PubMed  Google Scholar 

  5. Köhler T, Curty LK, Barja F et al (2000) Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 182:5990–5996. https://doi.org/10.1128/JB.182.21.5990-5996.2000

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gellatly SL, Hancock REW (2013) Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis 67:159–173. https://doi.org/10.1111/2049-632X.12033

    Article  CAS  PubMed  Google Scholar 

  7. Reygaert WC (2018) An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol 4:482–501. https://doi.org/10.3934/microbiol.2018.3.482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Flemming H-C, Wingender J, Szewzyk U et al (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563–575. https://doi.org/10.1038/nrmicro.2016.94

    Article  CAS  PubMed  Google Scholar 

  9. Jacoby GA (2009) AmpC beta-lactamases. Clin Microbiol Rev 22:161–182. https://doi.org/10.1128/CMR.00036-08 (Table of contents)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Munita JM, Arias CA (2016) Mechanisms of antibiotic resistance. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.VMBF-0016-2015

    Article  PubMed  PubMed Central  Google Scholar 

  11. Upadhyay S, Sen MR, Bhattacharjee A (2010) Presence of different beta-lactamase classes among clinical isolates of Pseudomonas aeruginosa expressing AmpC beta-lactamase enzyme. J Infect Dev Ctries 4:239–242

    Article  Google Scholar 

  12. Lau GW, Hassett DJ, Ran H, Kong F (2004) The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol Med 10:599–606. https://doi.org/10.1016/j.molmed.2004.10.002

    Article  CAS  PubMed  Google Scholar 

  13. Schalk IJ, Guillon L (2013) Pyoverdine biosynthesis and secretion in Pseudomonas aeruginosa: implications for metal homeostasis. Environ Microbiol 15:1661–1673. https://doi.org/10.1111/1462-2920.12013

    Article  CAS  PubMed  Google Scholar 

  14. Ketelboeter LM, Bardy SL (2017) Characterization of 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione resistance in pyomelanogenic Pseudomonas aeruginosa DKN343. PLoS ONE 12:e0178084. https://doi.org/10.1371/journal.pone.0178084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rodriguez-Rojas A, Mena A, Martin S et al (2009) Inactivation of the hmgA gene of Pseudomonas aeruginosa leads to pyomelanin hyperproduction, stress resistance and increased persistence in chronic lung infection. Microbiology 155:1050–1057. https://doi.org/10.1099/mic.0.024745-0

    Article  CAS  PubMed  Google Scholar 

  16. Ketelboeter LM, Potharla VY et al (2014) NTBC treatment of the pyomelanogenic Pseudomonas aeruginosa clinical isolate PA1111 inhibits pigment production and increases sensitivity to oxidative stress. Curr Microbiol 69:343–348. https://doi.org/10.1007/s00284-014-0593-

    Article  CAS  PubMed  Google Scholar 

  17. Hocquet D, Petitjean M, Rohmer L et al (2016) Pyomelanin-producing Pseudomonas aeruginosa selected during chronic infections have a large chromosomal deletion which confers resistance to pyocins. Environ Microbiol 18:3482–3493. https://doi.org/10.1111/1462-2920.13336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kosuru RY, Aashique M, Fathima A et al (2018) Revealing the dual role of gallic acid in modulating ampicillin sensitivity of Pseudomonas aeruginosa biofilms. Future Microbiol 13:297–312. https://doi.org/10.2217/fmb-2017-0132

    Article  CAS  PubMed  Google Scholar 

  19. Aashique M, Roy A, Kosuru RY, Bera S (2021) Membrane depolarization sensitizes Pseudomonas aeruginosa against tannic acid. Curr Microbiol. https://doi.org/10.1007/s00284-020-02330-7

    Article  PubMed  Google Scholar 

  20. García-Reyes S, Soto-Aceves MP, Cocotl-Yañez M et al (2020) The outlier Pseudomonas aeruginosa strain ATCC 9027 harbors a defective LasR quorum-sensing transcriptional regulator. FEMS Microbiol Lett 367:fnaa122. https://doi.org/10.1093/femsle/fnaa122

    Article  CAS  PubMed  Google Scholar 

  21. Grosso-Becerra MV, Gonzalez-Valdez A, Granados-Martinez MJ et al (2016) Pseudomonas aeruginosa ATCC 9027 is a non-virulent strain suitable for mono-rhamnolipids production. Appl Microbiol Biotechnol 100:9995–10004. https://doi.org/10.1007/s00253-016-7789-910.1007/s00253-016-7789-9[pii]

    Article  CAS  PubMed  Google Scholar 

  22. Cao H, Lai Y, Bougouffa S et al (2017) Comparative genome and transcriptome analysis reveals distinctive surface characteristics and unique physiological potentials of Pseudomonas aeruginosa ATCC 27853. BMC Genomics 18:459. https://doi.org/10.1186/s12864-017-3842-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. O’Toole GA (2011) Microtiter dish biofilm formation assay. J Vis Exp. https://doi.org/10.3791/2437

    Article  PubMed  PubMed Central  Google Scholar 

  24. Schmaler-Ripcke J, Sugareva V, Gebhardt P et al (2009) Production of pyomelanin, a second type of melanin, via the tyrosine degradation pathway in Aspergillus fumigatus. Appl Environ Microbiol 75:493–503. https://doi.org/10.1128/AEM.02077-08

    Article  CAS  PubMed  Google Scholar 

  25. Li H, Li X, Wang Z et al (2015) Autoinducer-2 regulates Pseudomonas aeruginosa PAO1 biofilm formation and virulence production in a dose-dependent manner. BMC Microbiol 15:192. https://doi.org/10.1186/s12866-015-0529-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Marone M, Mozzetti S, De Ritis D et al (2001) Semiquantitative RT-PCR analysis to assess the expression levels of multiple transcripts from the same sample. Biol Proced Online 3:19–25. https://doi.org/10.1251/bpo20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin T-H, Wu C-C, Tseng C-Y et al (2021) Effects of gallic acid on capsular polysaccharide biosynthesis in Klebsiella pneumoniae. J Microbiol Immunol Infect Wei Mian Yu Gan Ran Za Zhi S1684–1182(21):00141–00149. https://doi.org/10.1016/j.jmii.2021.07.002

    Article  Google Scholar 

  28. Aldulaimi OA (2017) General overview of phenolics from plant to laboratory, good antibacterials or not. Pharmacogn Rev 11:123–127. https://doi.org/10.4103/phrev.phrev_43_16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim B, ParK J-S, Choi H-Y et al (2019) Differential effects of alkyl gallates on quorum sensing in Pseudomonas aeruginosa. Sci Rep 9:7741. https://doi.org/10.1038/s41598-019-44236-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hunter RC, Newman DK (2010) A putative ABC transporter, hatABCDE, is among molecular determinants of pyomelanin production in Pseudomonas aeruginosa. J Bacteriol 192:5962–5971. https://doi.org/10.1128/JB.01021-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Helgadóttir S, Pandit S, Mokkapati VRSS et al (2017) Vitamin C pretreatment enhances the antibacterial effect of cold atmospheric plasma. Front Cell Infect Microbiol 7:43. https://doi.org/10.3389/fcimb.2017.00043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mousavi S, Bereswill S, Heimesaat MM (2019) Immunomodulatory and antimicrobial effects of vitamin C. Eur J Microbiol Immunol 9:73–79. https://doi.org/10.1556/1886.2019.00016

    Article  CAS  Google Scholar 

  33. Gul F, Khan KM, Adhikari A et al (2016) Antimicrobial and antioxidant activities of a new metabolite from Quercus incana. Nat Prod Res. https://doi.org/10.1080/14786419.2016.1266347

    Article  PubMed  Google Scholar 

  34. Mandal SM, Dias RO, Franco OL (2017) Phenolic compounds in antimicrobial therapy. J Med Food 20:1031–1038. https://doi.org/10.1089/jmf.2017.0017

    Article  CAS  PubMed  Google Scholar 

  35. Lu J, Wang Z, Ren M et al (2016) Antibacterial effect of gallic acid against Aeromonas hydrophila and Aeromonas sobria through damaging membrane integrity. Curr Pharm Biotechnol 17:1153–1158

    Article  CAS  Google Scholar 

  36. Lee DS, Je JY (2013) Gallic acid-grafted-chitosan inhibits foodborne pathogens by a membrane damage mechanism. J Agric Food Chem 61:6574–6579. https://doi.org/10.1021/jf401254g

    Article  CAS  PubMed  Google Scholar 

  37. Liu C, Huang H, Zhou Q et al (2020) Pithecellobium clypearia extract enriched in gallic acid and luteolin has antibacterial activity against MRSA and reduces resistance to erythromycin, ceftriaxone sodium and levofloxacin. J Appl Microbiol 129:848–859. https://doi.org/10.1111/jam.14668

    Article  CAS  PubMed  Google Scholar 

  38. Yang R, Guan Y, Zhou J et al (2017) Phytochemicals from Camellia nitidissima Chi flowers reduce the pyocyanin production and motility of Pseudomonas aeruginosa PAO1. Front Microbiol 8:2640. https://doi.org/10.3389/fmicb.2017.02640

    Article  PubMed  Google Scholar 

  39. Ahmad S, Lee SY, Kong HG et al (2016) Genetic determinants for pyomelanin production and its protective effect against oxidative stress in Ralstonia solanacearum. PLoS ONE 11:e0160845. https://doi.org/10.1371/journal.pone.0160845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Noorian P, Hu J, Chen Z et al (2017) Pyomelanin produced by Vibrio cholerae confers resistance to predation by Acanthamoeba castellanii. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fix147

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zeng Z, Cai X, Wang P et al (2017) Biofilm formation and heat stress induce pyomelanin production in deep-sea Pseudoalteromonas sp. SM9913. Front Microbiol 8:1822. https://doi.org/10.3389/fmicb.2017.01822

    Article  PubMed  PubMed Central  Google Scholar 

  42. Keith KE, Killip L, He P et al (2007) Burkholderia cenocepacia C5424 produces a pigment with antioxidant properties using a homogentisate intermediate. J Bacteriol 189:9057–9065. https://doi.org/10.1128/JB.00436-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zughaier SM, Ryley HC, Jackson SK (1999) A melanin pigment purified from an epidemic strain of Burkholderia cepacia attenuates monocyte respiratory burst activity by scavenging superoxide anion. Infect Immun 67:908–913. https://doi.org/10.1128/IAI.67.2.908-913.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Medina ME, Iuga C, Alvarez-Idaboy JR (2013) Antioxidant activity of propyl gallate in aqueous and lipid media: a theoretical study. Phys Chem Chem Phys 15:13137–13146. https://doi.org/10.1039/c3cp51644j

    Article  CAS  PubMed  Google Scholar 

  45. Wang Q, de Oliveira EF, Alborzi S et al (2017) On mechanism behind UV-A light enhanced antibacterial activity of gallic acid and propyl gallate against Escherichia coli O157:H7. Sci Rep 7:8325. https://doi.org/10.1038/s41598-017-08449-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xu Z, Wang X, Liu X et al (2017) Tannic Acid/Fe(3+)/Ag nanofilm exhibiting superior photodynamic and physical antibacterial activity. ACS Appl Mater Interfaces 9:39657–39671. https://doi.org/10.1021/acsami.7b10818

    Article  CAS  PubMed  Google Scholar 

  47. Tintino SR, Oliveira-Tintino CD, Campina FF et al (2016) Evaluation of the tannic acid inhibitory effect against the NorA efflux pump of Staphylococcus aureus. Microb Pathog 97:9–13. https://doi.org/10.1016/j.micpath.2016.04.003

    Article  CAS  PubMed  Google Scholar 

  48. Narayanan S, Kurian NK, Bhat SG (2020) Ultra-small pyomelanin nanogranules abiotically derived from bacteria-secreted homogentisic acid show potential applications in inflammation and cancer. BioNanoScience 10:191–203. https://doi.org/10.1007/s12668-019-00689-x

    Article  Google Scholar 

  49. Hatano T, Tsugawa M, Kusuda M et al (2008) Enhancement of antibacterial effects of epigallocatechin gallate, using ascorbic acid. Phytochemistry 69:3111–3116. https://doi.org/10.1016/j.phytochem.2007.08.013

    Article  CAS  PubMed  Google Scholar 

  50. Ben-David Y, Zlotnik E, Zander I et al (2018) SawR a new regulator controlling pyomelanin synthesis in Pseudomonas aeruginosa. Microbiol Res 206:91–98. https://doi.org/10.1016/j.micres.2017.10.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from the Department of Biotechnology, Govt. of India (Ref. 6242-P5/RGCB/PMD/DBT/SMNB/2015) to SB, from the Science and Engineering Research Board, Department of Science and Technology, Govt. of India (Ref. ECR/2016/000898) to AR, and a research fellowship from B.S. Abdur Rahman Crescent Institute of Science and Technology to RY.

Funding

This work was supported by research grants from the Department of Biotechnology, Govt. of India (Ref. 6242-P5/RGCB/PMD/DBT/SMNB/2015) to SB, from the Science and Engineering Research Board, Department of Science and Technology, Govt. of India (Ref. ECR/2016/000898) to AR, and a research fellowship from B.S. Abdur Rahman Crescent Institute of Science and Technology to RY.

Author information

Authors and Affiliations

Authors

Contributions

RY has conceptualized the work, designed and conducted the experiments, analyzed the data, prepared the manuscript; AR has conceptualized the work and prepare the manuscript, SB has conceptualized the work, designed the experiments, prepared the manuscript, and supervised the overall work.

Corresponding author

Correspondence to Soumen Bera.

Ethics declarations

Conflict of interest

The authors wish to declare no conflict of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All the authors consented for submitting the article in Current Microbiology.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2867 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosuru, R.Y., Roy, A. & Bera, S. Antagonistic Roles of Gallates and Ascorbic Acid in Pyomelanin Biosynthesis of Pseudomonas aeruginosa Biofilms. Curr Microbiol 78, 3843–3852 (2021). https://doi.org/10.1007/s00284-021-02655-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02655-x

Navigation