Skip to main content
Log in

Mapping lithology, hydrothermal alteration, and Fe mineralization using satellite data in the Champeh salt dome, South of Iran

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Champeh salt dome is located 30 km northwest of Bandar Lengeh, east of Hormozgan province, Iran. Iron ores and several alterations can be found in this salt dome, which consists of evaporitic and volcanic sequences of the Hormoz series and Pabdeh-Jahrom, Asmari, Gachsaran, and Mishan formations. The existing geological maps do not provide comprehensive details of mineralization, alteration, and various lithologies in this salt dome. Therefore, the separation and detection of these phenomena, by using ASTER (advanced spaceborne thermal emission and reflection radiometer) and OLI (operational land imager) satellite images and utilizing different image processing methods can be helpful to locate them and produce a lithological map of this area. The processing methods used in this study are band ratio, false-color combination, principal component analysis, independent component analysis, minimum noise fraction, spectral angle mapping, and linear spectral unmixing. Due to a vast number of salt domes in the south and southwest of Iran, and the similarity of these salt domes in terms of mineralogy and lithology, the results of this study can be useful in future geological and exploratory studies for this salt dome and similar salt domes of the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdel-Fattah MI, Shendi E-AH, Kaiser MF, Abuzied SM (2021) Unveiling geothermal potential sites along Gulf of Suez (Egypt) using an integrated geoscience approach. Terra Nova 33:306–319

    Article  Google Scholar 

  • Abuzied SM, Yuan M, Ibrahim SK, Kaiser MF, Seleem TA (2016) Delineation of groundwater potential zones in Nuweiba area (Egypt) using remote sensing and GIS techniques. Int J Signal Process Syst 4:109–117

    Google Scholar 

  • Abuzied SM, Kaiser MF, Shendi E-AH, Abdel-Fattah MI (2020)Multi-criteria decision support for geothermal resources exploration based on remote sensing, GIS and geophysical techniques along the Gulf of Suez coastal area, Egypt. Geothermics 88:101893

    Article  Google Scholar 

  • Aghanabati A (2004) Geology of Iran. Geological survey of Iran

    Google Scholar 

  • Ahmadi Moghadam P, Mortazavi M, Poosti M, Ahmadi Pour H (2018) Mineral chemistry, paragenesis and geochronological studies of the Hormuz Formation diabase rocks in the salt domes of sothern Iran, Hormozgan Province. Iran J Crystallogr Mineral 26:355–368. https://doi.org/10.29252/ijcm.26.2.355

    Article  Google Scholar 

  • Ahmadirouhani R, Karimpour MH, Rahimi B, Malekzadeh-Shafaroudi A, Pour AB, Pradhan B (2018) Integration of SPOT-5 and ASTER satellite data for structural tracing and hydrothermal alteration mineral mapping: implications for Cu–Au prospecting. Int J Image Data Fusion 9(3):237–262

    Article  Google Scholar 

  • Akbari Z, Rasa I, Mohajel M, Adabi MH, Yarmohammadi A (2015) Hydrothermal alteration identification of Ahangaran deposit, west of Iran using ASTER spectral analysis. Int Geoinformatics Res Dev 6:28–42 Hydrothermal alteration of ahangaran deposit, west of Iran using ASTER spectral analysis

    Google Scholar 

  • Akhmedenov K (2018) The landscape and biological diversity of salt-dome landscapes: specific features (Western Kazakhstan case study). Arab J Geosci 11:1–19

    Article  Google Scholar 

  • Arian M (2012) Diapirism and salt geostructures. Asar-e Nafis

  • Askari G, Pour AB, Pradhan B, Sarfi M, Nazemnejad F (2018) Band ratios matrix transformation (BRMT): a sedimentary lithology mapping approach using ASTER satellite sensor. Sensors 18:3213

    Article  Google Scholar 

  • Beiranvand Pour A, Park TYS, Park Y, Hong JK, Zoheir B, Pradhan B, Ayoobi I, Hashim M (2018) Application of multi-sensor satellite data for exploration of Zn–Pb sulfide mineralization in the Franklinian Basin, North Greenland. Remote Sens 10(8):1186

    Article  Google Scholar 

  • Biabangard H, Alian F, Bazamad M (2018) Petrography, mineralization and mineral explorations in the Zendan salt dome (Hara), Bandar Lengeh. J Econ Geol 10:195–216

    Google Scholar 

  • Bishop JL, Perry KA, Darby Dyar M, Bristow TF, Blake DF, Brown AJ, Peel S (2013) Coordinated spectral and XRD analyses of magnesite-nontronite-forsterite mixtures and implications for carbonates on Mars. J Geophys Res Planets 118:635–650

    Article  Google Scholar 

  • Bishop JL, Lane MD, Dyar MD, King SJ, Brown AJ, Swayze GA (2014a) Spectral properties of Ca-sulfates: gypsum, bassanite, and anhydrite. Am Mineral 99:2105–2115

    Article  Google Scholar 

  • Bishop JL, Ward MK, Roush TL, Davila AF, Brown AJ, McKay CP, Quinn RC, Pollard W (2014b) Spectral properties of Na, Ca-, Mg-and Fe-chlorides and analyses of hydrohalite-bearing samples from Axel Heiberg Island. In: Lunar Planet. Sci. Conf.

  • Boardman JW, Kruse FA (1994) Automated spectral analysis: a geological example using AVIRIS data, north Grapevine Mountains, Nevada: in Proceedings, ERIM Tenth Thematic Conference on Geologic Remote Sensing. Environ Res Inst Mich Ann Arbor MI Pp 407-418

  • Bonyadi Z, Daryanavard E (2020) Comparison of ASTER and Landsat-8 OLI data for detecting iron occurrences and alteration in Shahrak area, Kurdistan Province. J Adv Appl Geol 10:154–166. https://doi.org/10.22055/aag.2019.29579.1986

    Article  Google Scholar 

  • Chavez PS, Berlin GL, Sowers LB (1982) Statistical method for selecting landsat MSS. J Appl Photogr Eng 8:23–30

    Google Scholar 

  • Crosta AP, Moore JM (1989) Geological mapping using Landsat thematic mapper imagery in Almeria Province, South-east Spain. Int J Remote Sens 10:505–514

    Article  Google Scholar 

  • Crosta AP, De Souza Filho CR, Azevedo F, Brodie C (2003) Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. Int J Remote Sens 24:4233–4240

    Article  Google Scholar 

  • Darvishzadeh A (1991) Geology of Iran. Neda Publ Tehran 1–901

  • Dehghani A, Mortazavi Ravi S, Poosti M (2016) Petrogenesis of the sub-volcanic masses of the Chambeh Salt Dome, Bandar Lengeh, Hormuzgan Province. Tehran, Iran

  • Ducart DF, Silva AM, Toledo CLB, de Assis LM (2016) Mapping iron oxides with Landsat-8/OLI and EO-1/Hyperion imagery from the Serra Norte iron deposits in the Carajás Mineral Province, Brazil. Braz J Geol 46:331–349

    Article  Google Scholar 

  • Ehlmann BL, Mustard JF, Murchie SL, Poulet F, Bishop JL, Brown AJ, Calvin WM, Clark RN, Des Marais DJ, Milliken RE (2008) Orbital identification of carbonate-bearing rocks on Mars. Science 322:1828–1832

    Article  Google Scholar 

  • Faghih A, Ezati-Asl M, Mukherjee S, Soleimany B (2019) Characterizing halokinesis and timing of salt movement in the Abu Musa salt diapir, Persian Gulf, offshore Iran. Mar Pet Geol 105:338–352

    Article  Google Scholar 

  • Flahaut J, Martinot M, Bishop JL, Davies GR, Potts NJ (2017) Remote sensing and in situ mineralogic survey of the Chilean salars: an analog to Mars evaporate deposits? Icarus 282:152–173

    Article  Google Scholar 

  • Gabr SS, Hassan SM, Sadek MF (2015) Prospecting for new gold-bearing alteration zones at El-Hoteib area, South Eastern Desert, Egypt, using remote sensing data analysis. Ore Geol Rev 71:1–13

    Article  Google Scholar 

  • Gendrin A, Mangold N, Bibring JP, Langevin Y, Gondet B, Poulet F, Bonello G, Quantin C, Mustard J, Arvidson R (2005) Sulfates in Martian layered terrains: the OMEGA/Mars Express view. Science 307:1587–1591

    Article  Google Scholar 

  • Green AA, Berman M, Switzer P, Craig MD (1988) A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans Geosci Remote Sens 26:65–74

    Article  Google Scholar 

  • Gussow WC (1968) Salt diapirism: importance of temperature, and energy source of emplacement

  • Hyvärinen A (2013) Independent component analysis: recent advances. Philos Trans R Soc Math Phys Eng Sci 371:20110534

    Google Scholar 

  • Hyvärinen A, Zhang K, Shimizu S, Hoyer PO (2010) Estimation of a structural vector autoregression model using non-gaussianity. J Mach Learn Res 11:1709–1731

    Google Scholar 

  • Janati M, Niroomand Jadidi M, Valadanzoj MJ, Mohammadzadeh A (2013) Extraction of pure pixels using feature-based space physical parameters to estimate surface coverage subpixel. J Spat Plan 12:1–20

    Google Scholar 

  • Jourda JP, Djagoua EV, Kouamé K, Saley MB, Gronayes C, Achy JJ, Biémi J, Razack M (2006) Identification et cartographie des unités lithologiques et des accidents structuraux majeurs du département de Korhogo (Nord de la Côte d’Ivoire): Apport de l’imagerie ETM+ de Landsat. Rev Télédétection 6:123–142

    Google Scholar 

  • Kavak KS (2005) Recognition of gypsum geohorizons in the Sivas Basin (Turkey) using ASTER and Landsat ETM+ images. Int J Remote Sens 26:4583–4596

    Article  Google Scholar 

  • Kruse FA, Lefkoff AB, Boardman JW, Heidebrecht KB, Shapiro AT, Barloon PJ, Goetz AFH (1993) The spectral image processing system (SIPS)-interactive visualization and analysis of imaging spectrometer data. In: AIP Conference Proceedings. American Institute of Physics, pp 192–201

  • Kumar U, Kerle N, Ramachandra TV (2008) Constrained linear spectral unmixing technique for regional land cover mapping using MODIS data. In: Elleithy K (ed) Innovations and Advanced Techniques in Systems, Computing Sciences and Software Engineering. Springer, Dordrecht, pp 416–423

    Chapter  Google Scholar 

  • Kumar C, Shetty A, Raval S, Sharma R, Ray PC (2015) Lithological discrimination and mapping using ASTER SWIR Data in the Udaipur area of Rajasthan, India. Procedia Earth Planet Sci 11:180–188

    Article  Google Scholar 

  • Lee JM, Qin SJ, Lee IB (2006) Modified independent component analysis for multivariate statistical process monitoring. IFAC Proc 39:1133–1138

    Article  Google Scholar 

  • Loughlin WP (1991) Principal component analysis for alteration mapping. Photogramm Eng Remote Sens 57:1163–1169

    Google Scholar 

  • Luo G, Chen G, Tian L, Qin K, Qian SE (2016) Minimum noise fraction versus principal component analysis as a preprocessing step for hyperspectral imagery denoising. Can J Remote Sens 42:106–116

    Article  Google Scholar 

  • Lynch KL, Horgan BH, Munakata-Marr J, Hanley J, Schneider RJ, Rey KA, Spear JR, Jackson WA, Ritter SM (2015)Near-infrared spectroscopy of lacustrine sediments in the Great Salt Lake Desert: an analog study for Martian paleolake basins. J Geophys Res Planets 120:599–623

    Article  Google Scholar 

  • Mahmoudishadi S, Malian A, Hosseinali F (2017) Comparing independent component analysis with principal component analysis in detecting alterations of porphyry copper deposit (case study: Ardestan area, Central Iran). Int Arch Photogramm Remote Sens Spat Inf Sci 42:161–166

    Article  Google Scholar 

  • Mahvash Mohammadi N, Hezarkhani A, Maghsoodi A (2018) Applying different methods of processing satellite images to identify and separate the alteration zones in the Khooni region (Esfahan province). Res Earth Sci:137–152

  • Milewski R, Chabrillat S, Bookhagen B (2020) Analyses of Namibian seasonal salt pan crust dynamics and climatic drivers using Landsat 8 time-series and ground data. Remote Sens 12:474. https://doi.org/10.3390/rs12030474

    Article  Google Scholar 

  • Ninomiya Y, Fu B, Cudahy TJ (2005) Detecting lithology with Advanced Spaceborne Thermal Emission And Reflection Radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor” data. Remote Sens Environ 99:127–139

    Article  Google Scholar 

  • Noori L, Pour AB, Askari G, Taghipour N, Pradhan B, Lee CW, Honarmand M (2019) Comparison of different algorithms to map hydrothermal alteration zones using ASTER remote sensing data for polymetallic vein-type ore exploration: Toroud–Chahshirin Magmatic Belt (TCMB), North Iran. Remote Sens 11(5):495

    Article  Google Scholar 

  • Oil Service Company of Iran (2009)Bandar-E Lengeh geological compilation map 1:100000", Sheet No. 20880E

  • Ourhzif Z, Algouti A, Algouti A, Hadach F (2019) Lithological mapping using Landsat 8 OLI and ASTER multispectral data in Imini-Ounilla district south high atlas of Marrakech. ISPRS - Int Arch Photogramm Remote Sens Spat Inf Sci XLII-2(W13):1255–1262. https://doi.org/10.5194/isprs-archives-XLII-2-W13-1255-2019

    Article  Google Scholar 

  • Pajang S, Kadkhodaie A, Zamani B, Bargrizan M, Yousefpour MR (2015) Introducing 17 burial and non-burial domes based on seismic data in Hormuz Strait (Block E). J Pet Res 25:150–160

    Google Scholar 

  • Pirooj H, Tahmasbi Z, Ahmadi Khalaji A (2019) Mineralogy, geochemistry and radiometric dating of igneous rocks of Champeh salt dome, north Bandar-Lengeh. Iran J Crystallogr Mineral 27:909–924. https://doi.org/10.29252/ijcm.27.4.909

    Article  Google Scholar 

  • Pourkaseb H, Damiri K, Rangzan K, Saeidi S (2013) Enhancement of Jahani (Firouzabad) salt dome lithological units, using principal components analysis. J Econ Geol 5:83–92

    Google Scholar 

  • Rowan LC, Mars JC (2003) Lithologic mapping in the Mountain Pass, California area using advanced spaceborne thermal emission and reflection radiometer (ASTER) data. Remote Sens Environ 84:350–366

    Article  Google Scholar 

  • Sekandari M, Masoumi I, Beiranvand Pour A, Muslim A, Rahmani O, Hashim M, Zoheir B, Pradhan B, Misra A, Aminpour SM (2020) Application of Landsat-8, Sentinel-2, ASTER and WorldView-3 spectral imagery for exploration of carbonate-hosted Pb-Zn deposits in the Central Iranian Terrane (CIT). Remote Sens 12:1239

    Article  Google Scholar 

  • Serkan Öztan N, Lütfi Süzen M (2011) Mapping evaporate minerals by ASTER. Int J Remote Sens 32:1651–1673

    Article  Google Scholar 

  • Sheikhrahimi A, Pour AB, Pradhan B, Zoheir B (2019) Mapping hydrothermal alteration zones and lineaments associated with orogenic gold mineralization using ASTER data: A case study from the Sanandaj-Sirjan Zone, Iran. Adv Space Res 63:3315–3332

    Article  Google Scholar 

  • Shimizu S (2012) Joint estimation of linear non-Gaussian acyclic models. Neurocomputing 81:104–107

    Article  Google Scholar 

  • Soltaninejad A, Ranjbar H, Honarmand M, Dargahi S (2018) Evaporite mineral mapping and determining their source rocks using remote sensing data in Sirjan playa, Kerman, Iran. Carbonates Evaporites 33:255–274

    Article  Google Scholar 

  • Tayebi MH, Tangestani MH, Roosta H (2013) Mapping salt diapirs and salt diapir-affected areas using MLP neural network model and ASTER data. Int J Digit Earth 6:143–157

    Article  Google Scholar 

  • Traore M, Wambo JDT, Ndepete CP, Tekin S, Pour AB, Muslim AM (2020) Lithological and alteration mineral mapping for alluvial gold exploration in the south east of Birao area, Central African Republic using Landsat-8 Operational Land Imager (OLI) data. J Afr Earth Sci 170:103933

    Article  Google Scholar 

  • Volesky JC, Stern RJ, Johnson PR (2003) Geological control of massive sulfide mineralization in the Neoproterozoic Wadi Bidah shear zone, southwestern Saudi Arabia, inferences from orbital remote sensing and field studies. Precambrian Res 123:235–247

    Article  Google Scholar 

  • Wambo JDT, Pour AB, Ganno S, Asimow PD, Zoheir B, Dos Reis SR, Nzenti JP, Pradhan B, Muslim AM (2020) Identifying high potential zones of gold mineralization in a sub-tropical region using Landsat-8 and ASTER remote sensing data: a case study of the Ngoura-Colomines goldfield, eastern Cameroon. Ore Geol Rev 122:103530

    Article  Google Scholar 

  • Yang M, Ren G, Han L, Yi H, Gao T (2018) Detection of Pb–Zn mineralization zones in west Kunlun using Landsat 8 and ASTER remote sensing data. J Appl Remote Sens 12:026018

    Article  Google Scholar 

  • Zhang T, Yi G, Li H, Wang Z, Tang J, Zhong K, Li Y, Wang Q, Bie X (2016) Integrating data of ASTER and Landsat-8 OLI (AO) for hydrothermal alteration mineral mapping in duolong porphyry Cu-Au deposit, Tibetan Plateau, China. Remote Sens 8:890

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the use of the Landsat-8 image courtesy of the U.S. Geological Survey and the Terra ASTER image courtesy of the NASA and U.S. Geological Survey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Bonyadi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible editor: Biswajeet Pradhan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daryanavard, E., Bonyadi, Z. & Rahmani, S. Mapping lithology, hydrothermal alteration, and Fe mineralization using satellite data in the Champeh salt dome, South of Iran. Arab J Geosci 14, 2039 (2021). https://doi.org/10.1007/s12517-021-08401-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-08401-8

Keywords

Navigation