Skip to main content

Advertisement

Log in

Seasonal abundances of primary and secondary carbonaceous aerosols at a high-altitude station in the Western Ghat Mountains, India

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

The combustion-related primary and secondary carbon particles have gained more importance in the recent past due to their radiative and chemical properties. The present paper deals with the results obtained from observations on Organic Carbon (OC) and Elemental Carbon (EC) during 2019–20 over a high-altitude location, Mahabaleshwar in the Western Ghats in peninsular India. The data is classified into summer (March to May 2019) and winter (December 2019 to February 2020). Mean OC mass was more during summer (13.6 ± 4.4 μg / m3) than winter (11.1 ± 3.2 μg / m3). However, mean EC mass was more in winter (3.6 ± 1.1 μg / m3) than in summer (2.2 ± 1.1 μg / m3). The mean annual OC/EC ratio was 7.4 ± 4.4 in summer and 3.1 ± 0.7 in winter, suggesting more presence of secondary organic carbon (SOC) during summer. Estimated SOC formed about 62% of OC in summer whereas in winter both SOC and primary organic carbon (POC) formed 50% each of OC. Together both POC and EC contributed to 46% of the total carbon (TC) in summer and 62% in winter indicating more primary fraction during winter. The effective carbon ratio (ECR) was 1.6 and 0.7 during summer and winter respectively, indicating the dominance of scattering-type secondary carbonaceous aerosols in summer. Cluster and concentrated weighted trajectory (CWT) analysis indicated high concentrations of OC and EC in continental originated trajectories. However, a high OC/EC ratio was observed for air masses arriving from long-distance sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Ackerman AS, Toon OB, Taylor JP, Johnson DW, Hobbs PV, Ferek RJ (2000) Effects of aerosols on cloud albedo: evaluation of Twomey’s parameterization of cloud susceptibility using measurements of ship tracks. J Atmos Sci 57:2684–2695

    Article  Google Scholar 

  • Ali K, Panicker AS, Beig G, Srinivas R, Acharja P (2016) Carbonaceous aerosols over Pune and Hyderabad (India) and influence of meteorological factors. J Atmos Chem 73:1–27. https://doi.org/10.1007/s10874-015-9314-4

  • Babu SS, Moorthy KK (2002) Aerosol black carbon over a tropical coastal station in India. Geophys Res Lett 29:2–5. https://doi.org/10.1029/2002GL015662

    Article  Google Scholar 

  • Bell ML, Dominic F, Ebisu K, Zeger SL, Samet JM (2007) Spatial and temporal variation in PM2.5 chemical composition in the United States for health effects studies. Environ Health Perspect 115:989–995

    Article  CAS  Google Scholar 

  • Birch ME, Cary RA (1996) Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci Technol 25:221–241

    Article  CAS  Google Scholar 

  • Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, DeAngelo BJ, Flanner MG, Ghan S, Kärcher B, Koch D (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res 118:5380–5552

    Article  CAS  Google Scholar 

  • Buchunde P, Safai PD, Mukherjee S, Leena PP, Siingh D, Meena GS, Pandithurai G (2019) Characterisation of particulate matter at a high-altitude site in southwest India: Impact of dust episodes. J Earth System Sci 128:237. https://doi.org/10.1007/s12040-019-1265-8,1-18

    Article  Google Scholar 

  • Cape JN, Methven J, Hudson LE (2000) The use of trajectory cluster analysis to interpret trace gas measurements at Mace Head, Ireland. Atmos Environ 34:3651–3663

    Article  CAS  Google Scholar 

  • Castro LM, Pio CA, Harrison RM, Smith DJT (1999) Carbonaceous aerosol in urban and rural european atmospheres: estimation of secondary organic carbon concentrations. Atmos Environ 33:2771–2781

    Article  CAS  Google Scholar 

  • Cao JJ, Lee SC, Ho KF, Zou SC, Fung K, Li WJG, Chow JC (2004) Spatial and seasonal variations of atmospheric organic carbon and elemental carbon in Pearl River Delta Region, China. Atmos Environ 38:4447–4456

    Article  CAS  Google Scholar 

  • Chow JC, Watson JG, Lu Z, Lowenthal DH, Frazier CA, Solomon PA, Thuillier RH, Magliano K (1996) Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SJVAQS/ AUSPEX. Atmos Environ 30:2079–2112

    Article  CAS  Google Scholar 

  • Dan M, Zhuang G, Li X, Tao H, Zhuang Y (2004) The characteristics of carbonaceous species and their sources in PM2.5 in Beijing. Atmos Environ 38:3443–3452

    Article  CAS  Google Scholar 

  • Draxler RR, Rolph GD (2003) HYSPLIT (HYbrid Single-particle Lagrangian Integrated Trajectory). NOAA Air Resources Laboratory, Silver Spring, MD Model access via NOAA ARL READY

  • Feng Y, Chen Y, Guo H, Zhi G, Xiong S, Li J, Sheng G, Fu J (2009) Characteristics of organic and elemental carbon in PM2.5 samples in Shanghai. China Atmos Res 92:434–442

    Article  CAS  Google Scholar 

  • Fuzzi S, Andreae MO, Huebert BJ, Kulmala M, Bond TC, Boy M, Doherty SJ, Guenther A, Kanakidou M, Kawamura K, Kerminen V-M, Lohmann U, Russell LM, Pöschl U (2006) Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change. Atmos Chem Phys 6:2017–2038

    Article  CAS  Google Scholar 

  • Gawhane RD, Rao PSP, Budhavant KB, Waghmare V, Meshram DC, Safai PD (2017) Seasonal variation of chemical composition and source apportionment of PM2.5 in Pune. India Environ Sci Pollut Res 24:21065–21072

    Article  CAS  Google Scholar 

  • Gu J, Bai Z, Liu A, Wu L, Xie Y, Li W, Dong H, Zhang X (2010) Characterization of atmospheric organic carbon and element carbon of PM2.5 and PM10 at Tianjin. China Aero Air Qual Res 10:167–176

    Article  CAS  Google Scholar 

  • Jacobson MZ (2001) Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols. J Geophys Res 106(D2):1551–1568

    Article  CAS  Google Scholar 

  • Jeong U, Kim J, Lee H, Jung J, Kim YJ, Song CH, Koo JH (2011) Estimation of the contributions of long range transported aerosol in East Asia to carbonaceous aerosol and PM concentrations in Seoul, Korea using highly time resolved measurements: a PSCF model approach. J Environ Monit 13:1905–1918

    Article  CAS  Google Scholar 

  • Kabashnikov VP, Chaikovsky AP, Kucsera TL, Metelskaya NS (2011) Estimated accuracy of three common trajectory statistical methods. Atmos Environ times 45:5425–5430

    Article  CAS  Google Scholar 

  • Kanakidou M, Seinfeld JH, Pandis SN, Barnes I, Dentener FJ, Facchini MC, Van Dingenen R, Ervens B, Nenes A, Nielsen CJ, Swietlicki E, Putaud JP, Balkanski Y, Fuzzi S, Horth J, Moortgat GK, Winterhalter R, Myhre CEL, Tsigaridis K, Vignati E, Stephanou EG, Wilson J (2005) Organic aerosol and global climate modelling: a review. Atmos Chem Phys 5:1053–1123. https://doi.org/10.5194/acp-5-1053-2005

    Article  CAS  Google Scholar 

  • Kaskaoutis DG, Grivas G, Theodosi C, Tsagkaraki M, Paraskevopoulou D, Stavroulas I, Liakakou E, Gkikas A, Hatzianastassiou N, Wu C, Gerasopoulos E, Mihalopoulos N (2020) Carbonaceous Aerosols in Contrasting Atmospheric Environments in Greek Cities: Evaluation of the EC-tracer Methods for Secondary Organic Carbon Estimation. Atmos 11 161. https://doi.org/10.3390/atmos11020161

  • Khan MF, Hirano K, Masunaga S (2010) Quantifying the sources of hazardous elements of suspended particulate matter aerosol collected in Yokohama, Japan. Atmos Environ 44:2646–2657

    Article  CAS  Google Scholar 

  • Komppula M, Lihavainen H, Hyvärinen AP, Kerminen VM, Panwar TS, Sharma VP, Viisanen Y (2009) Physical properties of aerosol particles at a Himalayan background site in India. J Geophys Res Atmos 114:1–11

    Article  Google Scholar 

  • Kothawale DR, Deshpande NR, Rupa Kumar K (2016) Long term temperature trends at major, medium, small cities and hill stations in India during the period 1901–2013. American J Climate Change 5:383–398

    Article  Google Scholar 

  • Kulmala MP, Korhonen T, Vesala HC, Hansson K, Noone, Svenningsson B (1996) The effect of hygroscopicity on cloud droplet formation. Tellus 48B: 347−360

  • Kumar P, Yadav S (2016) Seasonal variations in water soluble inorganic ions, OC and EC in PM10 and PM >10 aerosols over Delhi: influence of sources and meteorological factors. Aero Air Qual Res 16:1165–1178

    Article  CAS  Google Scholar 

  • Kumar A, Attri AK (2016) Biomass combustion a dominant source of carbonaceous aerosols in the ambient environment of Western Himalayas. Aero Air Qual Res 16:519–529

    Article  CAS  Google Scholar 

  • Leena PP, Vijayakumar K, Anilkumar V, Pandithurai G (2017) Analysing temporal variability of particulate matter and possible contributing factors over Mahabaleshwar, a high-altitude station in Western Ghats, India. J Atmos Solar Terres Phys 164:105–115

    Article  CAS  Google Scholar 

  • Li W, Bai Z (2009) Characteristics of organic and elemental carbon in atmospheric fine particles in Tianjin, China. Particuology 7:432–437

    Article  CAS  Google Scholar 

  • Meena GS, Mukherjee S, Buchunde P, Safai PD, Vyoma S, Aslam MY, Sonbawne SM, Raju M, Anand V, Dani KK, Pandithurai G (2021) Seasonal variability and source apportionment of black carbon over a rural high-altitude and an urban site in western India. Atmos Pollut Res 12:32–45

    Article  Google Scholar 

  • Millet DB, Donahue NM, Pandis SN, Polidori A, Stanier CO, Turpin BJ, Goldstein AH (2005) Atmospheric volatile organic compound measurements during the Pittsburgh Air Quality Study: results, interpretation, and quantification of primary and secondary contributions. J Geophys Res-Atmos 110, D07S07. https://doi.org/10.1029/2004JD004601

  • Mukherjee S, Singla V, Pandithurai G, Safai PD, Meena GS, Dani KK, Anil Kumar V (2018) Seasonal variability in chemical composition and source apportionment of sub-micron aerosol over a high altitude site in Western Ghats, India. Atmos Environ 180:79–92

    Article  CAS  Google Scholar 

  • Novakov T, Menon S, Kirchstetter TW, Koch D, Hansen JE (2005) Aerosol organic carbon to black carbon ratios: analysis of published data and implications for climate forcing. J Geophys Res 110: D21205

  • Panicker AS, Ali K, Beig G, Yadav S (2015) Characterization of particulate matter and carbonaceous aerosol over two urban environments in Northern India. Aero Air Qual Res 15:2584–2595

    Article  CAS  Google Scholar 

  • Pachauri T, Satsangi A, Singla V, Lakhani A, Kumari KM (2013) Characteristics and sources of carbonaceous aerosols in PM2.5 during wintertime in Agra. India Aero Air Qual Res 13:977–991

    Article  CAS  Google Scholar 

  • Petit JE, Favez O, Albinet A, Canonaco F (2017) A user-friendly tool for comprehensive evaluation of the geographical origins of atmospheric pollution: Wind and trajectory analyses. Environ Model Softw 88:183–187

    Article  Google Scholar 

  • Pope CA, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD (2002) Lung cancer, cardiopulmonary mortality and long-term exposure to fine particulate air pollution. J Am Med Assoc 287:1132–1141

    Article  CAS  Google Scholar 

  • Putaud JP, Raes F, Van Dingenen R, Brüggemann E, Facchini MC, Decesari S, Fuzzi S, Gehrig R, Hüglin C, Laj P, Lorbeer G, Maenhaut W, Mihalopoulos N, Muller K, Querol X, Rodriguez S, Schneider J, Spindler G, Ten Brink H, Torseth K, Wiedensohler A (2004) A European aerosol phenomenology—2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites. Atmos Environ 38:2579–2595

    Article  CAS  Google Scholar 

  • Raju MP, Safai PD, Sonbawne SM, Buchunde PS, Pandithurai G, Dani KK (2020) Black carbon aerosols over a high altitude station, Mahabaleshwar: Radiative forcing and source apportionment. Atmos Pollut Res 11:1408–1417

    Article  CAS  Google Scholar 

  • Ram K, Sarin MM, Hegde P (2008) Atmospheric abundances of primary and secondary carbonaceous species at two high-altitude sites in India: Sources and temporal variability. Atmos Environ 42:6785–6796

    Article  CAS  Google Scholar 

  • Ram K, Sarin MM (2011) Day-night variability of EC, OC, WSOC and inorganic ions in urban environment of Indo-Gangetic Plain: implications to secondary aerosol formation. Atmos Environ 45:460–468

    Article  CAS  Google Scholar 

  • Ram K, Sarin MM (2010) Spatio-temporal variability in atmospheric abundances of EC, OC and WSOC over Northern India. J Aerosol Sci 41:88–98

    Article  CAS  Google Scholar 

  • Ramanathan V, Crutzen PJ, Lelieveld J, Mitra AP, Althausen D, Anderson J, Andreae W, Cantrell GR, Cass CE, Chung AD, Clarke JA, Coakley WD, Collins WC, Conant F, Dulac J, Heintzenberg AJ, Heymsfield B, Holben S, Howell JH, Jayaraman JT, Kiehl TN, Krishnamurti D, Lubin G, McFarquhar T, Novakov JA, Ogren IA, Podgorny K, Prather K, Priestley JM, Prospero PK, Quinn K, Rajeev P, Rasch S, Rupert R, Sadourny SK, Satheesh GE, Shaw P, Sheridan FPJ, Valero. (2001) Indian Ocean experiment: an integrated analysis of the climate forcing and effects of the great Indo-Asian haze. J Geophys 106:28371–28398

    Article  CAS  Google Scholar 

  • Rengarajan R, Sarin MM, Sudheer AK (2007) Carbonaceous and inorganic species in atmospheric aerosols during wintertime over urban and high-altitude sites in North India. J Geophys Res 112 D21307. https://doi.org/10.1029/2006JD008150

  • Sandeep K, Negi RS, Panicker AS, Gautam AS, Bhist DS, Beig G, Murthy BS, Latha R, Singh S, Das S (2020) Characteristics and variability of carbonaceous aerosols over a semi urban Location in Garhwal Himalayas Asia-Pacific. J Atmos Sci 56:455–465

    Google Scholar 

  • Satsangi A, Pachauri T, Singla V, Lakhani A, Kumari MK (2012) Organic and elemental carbon aerosols at a suburban site. Atmos Res 113:13–21

    Article  CAS  Google Scholar 

  • Safai PD, Rao PSP, Momin GA, Ali K, Chate DM, Praveen PS (2004) Chemical composition of precipitation during 1984–2002 at Pune, India. Atmos Environ 38:1705–1714

    Article  CAS  Google Scholar 

  • Saarikoski S, Timonen H, Saarnio K, Aurela M, Jarvi L, Keronen P, Kerminen VM, Hillamo R (2008) Sources of organic carbon in fine particulate matter in northern European urban air. Atmos Chem Phys 8:6281–6295

    Article  CAS  Google Scholar 

  • Safai PD, Raju MP, Budhavant KB, Rao PSP, Devara PCS (2013) Long term studies on characteristics of black carbon aerosols over a tropical urban station Pune, India. Atmos Res 132–133

  • Safai PD, Raju MP, Rao PSP, Pandithurai G (2014) Characterization of carbonaceous aerosols over the urban tropical location and a new approach to evaluate their climatic importance. Atmos Environ 92:493–500

    Article  CAS  Google Scholar 

  • Schauer J, Rogge W, Hildemann L, Mazurek M, Cass G, Simoneit B (1996) Source apportionment of airborne particulate matter using organic compounds as tracers. Atmos Environ 30:3837–3855. https://doi.org/10.1016/1352-2310(96)00085-4

    Article  CAS  Google Scholar 

  • Srinivas B, Sarin MM (2014) PM2.5, EC and OC in atmospheric outflow from the Indo-Gangetic Plain: temporal variability and aerosol organic carbon-to-organic, mass conversion factor. Sci Total Environ 487:196–205

    Article  CAS  Google Scholar 

  • Stull RB (1999) An introduction to boundary layer meteorology. Springer, New York, p 620

    Google Scholar 

  • Turpin BJ, Huntzicker JJ (1995) Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS. Atmos Environ 29:3527–3544

    Article  CAS  Google Scholar 

  • Vinoj V, Satheesh SK, Moorthy KK (2010) Optical, radiative, and source characteristics of aerosols at Minicoy, a remote island in the southern Arabian Sea. J Geophys Res Atmos 115:1–19. https://doi.org/10.1029/2009JD011810

    Article  Google Scholar 

  • Wu C, Yu JZ (2016) Determination of primary combustion source organic carbon-to-elemental carbon (OC/EC) ratio using ambient OC and EC measurements: Secondary OC-EC correlation minimization method. Atmos Chem Phys 16(8):5453–5465

    Article  CAS  Google Scholar 

  • Yang L, Pandithurai G, Chate DM, Rao PSP, Waghmare V, Iyer U (2019) Evidence of precedent wind role on controlling PM1 wet scavenging of aerosols during monsoon rain events. Atmos Environ 201:265–277

    Article  CAS  Google Scholar 

  • Yu K, Cheung Y, Cheung T, Henry R (2004) Identifying the impact of large urban airports on local air quality by nonparametric regression. Atmos Environ 38:4501–4507

    Article  CAS  Google Scholar 

  • Zhang Y, Shao M, Zhang Y, Zeng L, He L, Zhu B, Wei Y, Zhu X (2007) Source profiles of particulate organic matters emitted from cereal straw burnings. J Environ Sci 19:167–175

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director, IITM, for the encouragement and support to undertake this work. Also, the authors are thankful to scientific staff and engineers at the HACPL, Mahabaleshwar, for their help during the observations.

Author information

Authors and Affiliations

Authors

Contributions

P.S. Buchunde: conceptualization, data curation, formal analysis, writing—original draft. P.D. Safai: data curation, writing—review and editing. S Mukherjee: formal analysis, writing and editing. M.P. Raju: investigation, data curation. G.S. Meena: formal analysis. S. M. Sonbawne: formal analysis. K.K. Dani: resources, supervision. G. Pandithurai: project administration, supervision, writing—review and editing.

Corresponding author

Correspondence to P. D. Safai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchunde, P.S., Safai, P.D., Mukherjee, S. et al. Seasonal abundances of primary and secondary carbonaceous aerosols at a high-altitude station in the Western Ghat Mountains, India. Air Qual Atmos Health 15, 209–220 (2022). https://doi.org/10.1007/s11869-021-01097-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-021-01097-5

Keywords

Navigation