Skip to main content
Log in

Modern Machine Learning Methods for Telemetry-Based Spacecraft Health Monitoring

  • SURVEY ARTICLES
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We survey the progress in data mining methods for spacecraft health monitoring. The main emphasis is placed on the analysis of telemetry data enabling the identification of spacecraft states that are atypical during normal operation and the prediction of possible failures in the operation of the spacecraft or its components. The main stages required for the creation of general-purpose spacecraft state monitoring systems are considered; methods for detecting anomalies in telemetry data taking into account the specific features of the spacecraft are presented in detail; and publications on this topic known to the authors are analyzed. Examples of the implementation of such systems in flight control centers of various countries are given. The promising areas of development of methods for analyzing the technical state of complex systems relevant for solving problems in space technology are discussed, and the main factors that hinder the development of machine learning methods for analyzing telemetry data are noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. https://www.seradata.com/products/spacetrak/ .

  2. https://github.com/numenta/NAB/tree/master/data/ .

  3. https://ti.arc.nasa.gov/tech/dash/groups/pcoe/ .

  4. https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/ .

  5. https://www.seradata.com/products/spacetrak/ .

REFERENCES

  1. Zolghadri A., Advanced model-based FDIR techniques for aerospace systems: today challenges and opportunities, Progr. Aerosp. Sci., 2012, vol. 53, pp. 18–29. https://doi.org/10.1016/j.paerosci.2012.02.004

    Article  Google Scholar 

  2. Abanin, O.I. and Solov’ev, S.V., Content and structure of anomaly detection problems in spacecraft onboard system operation, Inzh. Zh.: Nauka Innovatsii, 2019, no. 6(90), p. 7. https://doi.org/10.18698/2308-6033-2019-6-1890

  3. Tipaldi, M. et al., On applying AI-driven flight data analysis for operational spacecraft model-based diagnostics, Annu. Rev. Control, 2020, vol. 49, pp. 197–211. https://doi.org/10.1016/j.arcontrol.2020.04.012

    Article  Google Scholar 

  4. Solov’ev, S.V. and Mishurova, N.V., Analysis of the current control process state in spacecraft flight control, Inzh. Zh.: Nauka Innovatsii, 2016, no. 3(51), p. 3. https://doi.org/10.18698/2308-6033-2016-3-1474

  5. Solov’ev, V.A., Lyubinskii, V.E., and Zhuk, E.I., State of the art and development prospects of the spacecraft flight control system, Pilotiruemye Polety Kosmos, 2011, no. 1(1), pp. 27–37.

  6. Balukhto, A.N. and Romanov, A.A., Artificial intelligence in space technology: state of the art and development prospects, Raketno-Kosm. Priborostr. Inf. Sist., 2019, vol. 6, no. 1, pp. 65–75. https://doi.org/10.30894/issn2409-0239.2019.6.1.65.75

    Google Scholar 

  7. Chandola, V., Banerjee, A., and Kumar, V., Anomaly detection: a survey, ACM Comput. Surv., 2009, vol. 41, no. 3. https://doi.org/10.1145/1541880.1541882

  8. Pimentel, M.A.F. et al., A review of novelty detection, Signal Process., 2014, vol. 99, pp. 215–249. https://doi.org/10.1016/j.sigpro.2013.12.026

    Article  Google Scholar 

  9. Wang, H., Bah, M.J., and Hammad, M., Progress in outlier detection techniques: a survey, IEEE Access., 2019, vol. 7, pp. 107964–108000. https://doi.org/10.1109/ACCESS.2019.2932769

    Article  Google Scholar 

  10. Chalapathy, R. and Chawla, S., Deep learning for anomaly detection: a survey, 2019. [cs, stat]. Cited April 17, 2020.

  11. Zimek, A., Schubert, E., and Kriegel, H.-P., A survey on unsupervised outlier detection in high-dimensional numerical data, Stat. Anal. Data Min.: ASA Data Sci. J., 2012, vol. 5, no. 5, pp. 363–387. https://doi.org/10.1002/sam.11161

    Article  MathSciNet  Google Scholar 

  12. Thudumu, S. et al., A comprehensive survey of anomaly detection techniques for high dimensional big data, J. Big Data, 2020, vol. 7, no. 1, p. 42. https://doi.org/10.1186/s40537-020-00320-x

    Article  Google Scholar 

  13. Gavrilovski, A. et al., Challenges and opportunities in flight data mining: a review of the state of the art, in AIAA Infotech @ Aerospace, San Diego, California: AIAA, 2016. https://doi.org/10.2514/6.2016-0923

  14. Khan, S. and Yairi, T., A review on the application of deep learning in system health management, Mech. Syst. Signal Process., 2018, vol. 107, pp. 241–265. https://doi.org/10.1016/j.ymssp.2017.11.024

    Article  Google Scholar 

  15. Basora, L., Olive, X., and Dubot, T., Recent advances in anomaly detection methods applied to aviation, Aerospace, 2019, vol. 6, no. 11, p. 117. https://doi.org/10.3390/aerospace6110117

    Article  Google Scholar 

  16. Solov’ev, V.A., Lysenko, L.N., and Lyubinskii, V.E., Upravlenie kosmicheskimi poletami. Uch. pos. Ch. 1 (Space Flight Control. A Handbook. Part 1), Moscow: Mosk. Gos. Univ. im. Baumana, 2009.

    Google Scholar 

  17. Gao, Z., Cecati, C., and Ding, S., A survey of fault diagnosis and fault-tolerant techniques—Part I: fault diagnosis with model-based and signal-based approaches, IEEE Trans. Ind. Electron., 2015, vol. 62, no. 6, pp. 3757–3767. https://doi.org/10.1109/TIE.2015.2417501

    Article  Google Scholar 

  18. Barber, D., Bayesian Reasoning and Machine Learning, New York: Cambridge Univ. Press, 2012.

    MATH  Google Scholar 

  19. Pimentel, T. et al., Deep active learning for anomaly detection, 2020. [cs, stat]. Cited August 8, 2020.

  20. Das, S. et al., Incorporating expert feedback into active anomaly discovery, 2016 IEEE 16th Int. Conf. Data Mining (ICDM) (2016), pp. 853–858. https://doi.org/10.1109/ICDM.2016.0102

  21. IBM Analytics. ASUM Analytics Solutions Unified Method, 2015.

  22. Suo, M. et al., Data-driven fault diagnosis of satellite power system using fuzzy Bayes risk and SVM, Aerosp. Sci. Technol., 2019, vol. 84, pp. 1092–1105. https://doi.org/10.1016/j.ast.2018.11.049

    Article  Google Scholar 

  23. Kononenko, I., Estimating attributes: analysis and extensions of RELIEF, in Machine Learning: ECML-94. Lecture Notes in Computer Science, Bergadano, F. and De Raedt, L., Eds., Berlin–Heidelberg: Springer, 1994, pp. 171–182.

  24. Hanchuan Peng, Fuhui Long, and Ding, C., Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy, IEEE Trans. Pattern Anal. Mach. Intell., 2005, vol. 27, no. 8, pp. 1226–1238. https://doi.org/10.1109/TPAMI.2005.159

    Article  Google Scholar 

  25. Hu, Q. et al., Neighborhood rough set based heterogeneous feature subset selection, Inf. Sci., 2008, vol. 178, no. 18, pp. 3577–3594. https://doi.org/10.1016/j.ins.2008.05.024

    Article  MathSciNet  MATH  Google Scholar 

  26. Mallat, S., A Wavelet Tour of Signal Processing: The Sparse Way. 3rd Ed., New York: Academic Press, 2008. https://doi.org/10.1016/B978-0-12374370-1.X0001-8

    Google Scholar 

  27. Barreyre, C. et al., Statistical methods for outlier detection in space telemetries, in Space Operations: Inspiring Humankind’s Future, Pasquier, H. et al., Eds., Cham: Springer Int. Publ., 2019, pp. 513–547.

  28. O’Meara, C., Schlag, L., and Wickler, M., Applications of deep learning neural networks to satellite telemetry monitoring, 15th Int. Conf. on Space Operations, Marseilles, France: AIAA, 2018. https://doi.org/10.2514/6.2018-2558

  29. Gowda, G.M. et al., The added value of advanced feature engineering and selection for machine learning models in spacecraft behavior prediction, in 2018 SpaceOps Conf., Marseilles, France: AIAA, 2018.

  30. Lucas, L. and Boumghar, R., Machine learning for spacecraft operations support—the Mars Express power challenge, in 2017 6th Int. Conf. Space Mission Challenges Inf. Technol. (SMC-IT), 2017, pp. 82–87.

  31. Bay, S.D. and Schwabacher, M., Mining distance-based outliers in near linear time with randomization and a simple pruning rule, in Proc. 9th ACM SIGKDD Int. Conf. Knowledge Discovery Data Min. (KDD ’03), Washington, D.C.: ACM, 2003, pp. 29–38.

  32. Breunig, M.M. et al., LOF: identifying density-based local outliers, in Proc. 2000 ACM SIGMOD Int. Conf. Manage. Data (SIGMOD ’00), Dallas, Texas: ACM, 2000, pp. 93–104.

  33. Von Brünken, J., Houle, M.E., and Zimek, A., Intrinsic dimensional outlier detection in high-dimensional data, NII Tech. Rep., 2015, vol. 2015, no. 3, pp. 1–12.

    Google Scholar 

  34. Houle, M.E., Kashima, H., and Nett, M., Generalized expansion dimension, in 2012 IEEE 12th Int. Conf. Data Min. Workshops, 2012, pp. 587–594.

  35. Houle, M.E., Dimensionality, discriminability, density and distance distributions, in 2013 IEEE 13th Int. Conf. Data Min. Workshops, 2013, pp. 468–473.

  36. Kriegel, H.-P. et al., Outlier detection in axis-parallel subspaces of high dimensional data, in Advances in Knowledge Discovery and Data Mining (Lecture Notes in Computer Science), Theeramunkong, T. et al., Eds., Berlin–Heidelberg: Springer, 2009, pp. 831–838.

  37. Kriegel, H.-P., Schubert, M., and Zimek, A., Angle-based outlier detection in high-dimensional data, in Proc. 14th ACM SIGKDD Int. Conf. Knowl. Discovery Data Min. (KDD ’08), New York: ACM, 2008, pp. 444–452.

  38. Rosenblatt, M., Remarks on some nonparametric estimates of a density function, Ann. Math. Stat., 1956, vol. 27, no. 3, pp. 832–837. https://doi.org/10.1214/aoms/1177728190

    Article  MathSciNet  MATH  Google Scholar 

  39. Tang, B. and He, H., A local density-based approach for outlier detection, Neurocomputing, 2017, vol. 241, pp. 171–180.

  40. Dynamic time warping, in Inf. Retrieval for Music and Motion, Muller, M., Ed., Berlin–Heidelberg: Springer, 2007, pp. 69–84. https://doi.org/10.1007/978-3-540-74048-3_4

  41. O’Meara, C. et al., ATHMoS: automated telemetry health monitoring system at GSOC using outlier detection and supervised machine learning, in SpaceOps 2016 Conf., Daejeon, Korea: AIAA, 2016.

  42. Martinez, J., New telemetry monitoring paradigm with novelty detection, in SpaceOps 2012 Conf., AIAA, 2012. https://doi.org/10.2514/6.2012-1275123

  43. Schlag, L., O’Meara, C., and Wickler, M., Numerical analysis of automated anomaly detection algorithms for satellite telemetry, in 15th Int. Conf. Space Oper., Marseilles, France: AIAA, 2018.

  44. Guha, S., Rastogi, R., and Shim, K., Rock: a robust clustering algorithm for categorical attributes, Inf. Syst., 2000, vol. 25, no. 5, pp. 345–366. https://doi.org/10.1016/S0306-4379(00)00022-3

    Article  Google Scholar 

  45. Ertöz, L., Steinbach, M., and Kumar, V., Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data, in Proc. 2003 SIAM Int. Conf. Data Min., Soc. Ind. Appl. Math., 2003, pp. 47–58.

  46. Kohonen, T., Exploration of very large databases by self-organizing maps, Proc. Int. Conf. Neural Networks (ICNN’97), IEEE, 1997, vol. 1, pp. PL1–PL6. https://doi.org/10.1109/ICNN.1997.611622

  47. He, Z., Xu, X., and Deng, S., Discovering cluster-based local outliers, Pattern Recognit. Lett., 2003, vol. 24, no. 9, pp. 1641–1650. https://doi.org/10.1016/S0167-8655(03)00003-5

    Article  MATH  Google Scholar 

  48. Sun, H. et al., CD-trees: an efficient index structure for outlier detection, in Advances in Web-Age Information Management (Lecture Notes in Computer Science), Li, Q., Wang, G., and Feng, L., Eds., Berlin–Heidelberg: Springer, 2004, pp. 600–609.

  49. Iverson, D.L. and Field, M., Inductive System Health Monitoring, 2004.

  50. Iverson, D.L. et al., General purpose data-driven monitoring for space operations, J. Aerosp. Comput. Inf. Commun., 2012, vol. 9, no. 2, pp. 26–44. https://doi.org/10.2514/1.54964

    Article  Google Scholar 

  51. Singh, S., A data-driven approach to Cubesat health monitoring, Master’s Theses and Project Reports, 2017. https://doi.org/10.15368/theses.2017.100

  52. Chen, C. et al., A fault diagnosis method for satellite flywheel bearings based on 3D correlation dimension clustering technology, IEEE Access, 2018, vol. 6, pp. 78483–78492. https://doi.org/10.1109/ACCESS.2018.2885046

    Article  Google Scholar 

  53. Suo, M. et al., Neighborhood grid clustering and its application in fault diagnosis of satellite power system, Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng., 2019, vol. 233, no. 4, pp. 1270–1283. https://doi.org/10.1177/0954410017751991

    Article  Google Scholar 

  54. Azevedo, D.R., Ambrosio, A.M., and Vieira, M., Applying data mining for detecting anomalies in satellites, in 2012 9th Eur. Dependable Comput. Conf., 2012, pp. 212–217.

  55. Rahimi, A., Kumar, K.D., and Alighanbari, H., Fault estimation of satellite reaction wheels using covariance based adaptive unscented Kalman filter, Acta Astronaut., 2017, vol. 134, pp. 159–169. https://doi.org/10.1016/j.actaastro.2017.02.003

  56. Yairi, T. et al., A data-driven health monitoring method for satellite housekeeping data based on probabilistic clustering and dimensionality reduction, IEEE Trans. Aerosp. Electron. Syst., 2017, vol. 53, no. 3, pp. 1384–1401. https://doi.org/10.1109/TAES.2017.2671247

    Article  Google Scholar 

  57. Tipping, M.E. and Bishop, C.M., Mixtures of probabilistic principal component analyzers, Neural Comput., 1999, vol. 11, no. 2, pp. 443–482. https://doi.org/10.1162/089976699300016728

    Article  Google Scholar 

  58. Adnane, A. et al., Real-time sensor fault detection and isolation for LEO satellite attitude estimation through magnetometer data, Adv. Space Res., 2018, vol. 61, no. 4, pp. 1143–1157. https://doi.org/10.1016/j.asr.2017.12.007

    Article  Google Scholar 

  59. Ahmed, A.M. et al., Prediction of battery remaining useful life on board satellites using logical analysis of data, in 2019 IEEE Aerosp. Conf., 2019. P. 1–8. https://doi.org/10.1109/AERO.2019.8741717

  60. Kaplan, E.L. and Meier, P., Nonparametric estimation from incomplete observations, J. Am. Stat. Assoc., 1958, vol. 53, no. 282, pp. 457–481. https://doi.org/10.2307/2281868

    Article  MathSciNet  MATH  Google Scholar 

  61. Chung, J. et al., Empirical evaluation of gated recurrent neural networks on sequence modeling, 2014. [cs]. Cited January 9, 2020.

  62. Hochreiter, S. and Schmidhuber, J., Long short-term memory, Neural Comput., 1997. https://doi.org/10.1162/neco.1997.9.8.1735

  63. Agrawal, R., Imielinski, T., and Swami, A., Mining association rules between sets of items in large databases, ACM SIGMOD Record, 1993, vol. 22, no. 2, pp. 207–216. https://doi.org/10.1145/170036.170072

    Article  Google Scholar 

  64. Schölkopf, B. et al., Estimating the support of a high-dimensional distribution, Neural Comput., 2001, vol. 13, no. 7, pp. 1443–1471. https://doi.org/10.1162/089976601750264965

    Article  MathSciNet  MATH  Google Scholar 

  65. Das, S. et al., Multiple kernel learning for heterogeneous anomaly detection: algorithm and aviation safety case study, in Proc. 16th ACM SIGKDD Int. Conf. Knowl. Discovery Data Min. (KDD ’10), New York: ACM, 2010, pp. 47–56.

  66. Budalakoti, S., Srivastava, A.N., and Otey, M.E., Anomaly detection and diagnosis algorithms for discrete symbol sequences with applications to airline safety, IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev., 2009, vol. 39, no. 1, pp. 101–113. https://doi.org/10.1109/TSMCC.2008.2007248

    Article  Google Scholar 

  67. Patel, P., et al., Mining motifs in massive time series databases, Proc. 2002 IEEE Int. Conf. Data Min., 2002, pp. 370–377. https://doi.org/10.1109/ICDM.2002.1183925

  68. Li, K. et al., A spacecraft electrical characteristics multi-label classification method based on off-line FCM clustering and on-line WPSVM, PLoS ONE, 2015, vol. 10, no. 11, p. e0140395. https://doi.org/10.1371/journal.pone.0140395

    Article  Google Scholar 

  69. Li, K. et al., Multi-label spacecraft electrical signal classification method based on DBN and random forest, PLOS ONE, 2017, vol. 12, no. 5, p. e0176614. https://doi.org/10.1371/journal.pone.0176614

    Article  Google Scholar 

  70. Vorontsov, V.A. and Fedorov, E.A., Development of a prototype of an intelligent system for operational monitoring and technical condition of the main onboard spacecraft systems, Tr. Mosk. Aviats. Inst., 2015, no. 82, p. 35.

  71. Nassar, B. and Hussein, W., State-of-health analysis applied to spacecraft telemetry based on a new projection to latent structure discriminant analysis algorithm, in 2015 IEEE Aerosp. Conf., 2015, pp. 1–11. https://doi.org/10.1109/AERO.2015.7118887

  72. Nassar, B., Hussein, W., and Medhat, M., Supervised learning algorithms for spacecraft attitude determination and control system health monitoring, IEEE Aerosp. Electron. Syst. Mag., 2017, vol. 32, no. 4, pp. 26–39. https://doi.org/10.1109/MAES.2017.150049

    Article  Google Scholar 

  73. Fuertes, S. et al., Improving spacecraft health monitoring with automatic anomaly detection techniques, SpaceOps 2016 Conf., AIAA, 2016. https://doi.org/10.2514/6.2016-2430

  74. Galal M.A., et al., Satellite battery fault detection using naive Bayesian classifier, 2019 IEEE Aerosp. Conf., 2019, pp. 1–11. https://doi.org/10.1109/AERO.2019.8741963

  75. Ibrahim, S.K. et al., Machine learning techniques for satellite fault diagnosis, Ain Shams Eng. J., 2020, vol. 11, no. 1, pp. 45–56. https://doi.org/10.1016/j.asej.2019.08.006

    Article  Google Scholar 

  76. Trafalis, T.B. and Ince, H., Support vector machine for regression and applications to financial forecasting, in Proc. IEEE-INNS-ENNS Int. Joint Conf. Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, IEEE, 2000, vol. 6. pp. 348–353. https://doi.org/10.1109/IJCNN.2000.859420

  77. Chikalov, I. et al., Logical analysis of data: theory, methodology and applications, in Three Approaches to Data Analysis: Test Theory, Rough Sets and Logical Analysis of Data (Intelligent Systems Reference Library), Chikalov, I. et al., Eds., Berlin–Heidelberg: Springer, 2013, pp. 147–192.

  78. Abramov, N.S. et al., High-performance neural network system for monitoring the state and behavior of spacecraft subsystems using telemetry data, Program. Sist. Teor. Pril. (Rossiya, Ves’kovo), 2017, no. 3(30).

  79. Martinez, J. and Donati, A., Novelty detection with deep learning, 2018 SpaceOps Conf., AIAA, 2018. https://doi.org/10.2514/6.2018-2560

  80. Petković, M. et al., Machine learning for predicting thermal power consumption of the Mars Express spacecraft, IEEE Aerosp. Electron. Syst. Mag., 2019, vol. 34, no. 7, pp. 46–60. https://doi.org/10.1109/MAES.2019.2915456

    Article  Google Scholar 

  81. Ibrahim, S.K. et al., Machine learning methods for spacecraft telemetry mining, IEEE Trans. Aerosp. Electron. Syst., 2019, vol. 55, no. 4, pp. 1816–1827. https://doi.org/10.1109/TAES.2018.2876586

    Article  Google Scholar 

  82. Omran, E.A. and Murtada, W.A., Efficient anomaly classification for spacecraft reaction wheels, Neural Comput. Appl., 2019, vol. 31, no. 7, pp. 2741–2747. https://doi.org/10.1007/s00521-017-3226-y

    Article  Google Scholar 

  83. Murtada, W.A. and Omran, E.A., Robust anomaly identification algorithm for noisy signals: spacecraft solar panels model, Neural Comput. Appl., 2019, vol. 32, pp. 12281–12294. https://doi.org/10.1007/s00521-019-04407-2

    Article  Google Scholar 

  84. Shin, Y. et al., ITAD: integrative tensor-based anomaly detection system for reducing false positives of satellite systems, in Proc. 29th ACM Int. Conf. Inf. & Knowl. Manage. (CIKM ’20), New York: ACM, 2020, pp. 2733–2740. https://doi.org/10.1145/3340531.3412716

  85. Kiers, H.A.L., Towards a standardized notation and terminology in multiway analysis, J. Chemometrics, 2000, vol. 14, no. 3, pp. 105–122.

    Article  Google Scholar 

  86. Hundman, K. et al., Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding, Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data Min., 2018, pp. 387–395. https://doi.org/10.1145/3219819.3219845

  87. Pilastre, B. et al., Anomaly detection in mixed telemetry data using a sparse representation and dictionary learning, Signal Process., 2020, vol. 168, p. 107320. https://doi.org/10.1016/j.sigpro.2019.107320

    Article  Google Scholar 

  88. Aggarwal, C.C., Outlier ensembles: position paper, ACM SIGKDD Explor. Newsl., 2013, vol. 14, no. 2, pp. 49–58. https://doi.org/10.1145/2481244.2481252

    Article  Google Scholar 

  89. Carlton, A. et al., Telemetry fault-detection algorithms: applications for spacecraft monitoring and space environment sensing, J. Aerosp. Inf. Syst., 2018, vol. 15, no. 5, pp. 239–252. https://doi.org/10.2514/1.I010587

    Google Scholar 

  90. Nozari, H.A. et al., Novel non-model-based fault detection and isolation of satellite reaction wheels based on a mixed-learning fusion framework, IFACPapersOnLine, 2019, vol. 52, no. 12 (21st IFAC Symposium on Automatic Control in Aerospace ACA 2019), pp. 194–199. https://doi.org/10.1016/j.ifacol.2019.11.222

    Google Scholar 

  91. Pang, J. et al., Anomaly detection for satellite telemetry series with prediction interval optimization, 2018 Int. Conf. Sensing Diagn. Prognostics Control (SDPC), 2018, pp. 408–414. https://doi.org/10.1109/SDPC.2018.8664879

  92. Lavin, A. and Ahmad, S., Evaluating real-time anomaly detection algorithms—the Numenta Anomaly Benchmark, in 2015 IEEE 14th Int. Conf. Mach. Learn. Appl. (ICMLA), 2015, pp. 38–44. https://doi.org/10.1109/ICMLA.2015.141

  93. Tatbul, N. et al., Precision and recall for time series, in Advances in Neural Information Processing Systems 31 , Bengio, S. et al., Eds., Curran Assoc., 2018, pp. 1920–1930.

  94. Verzola I., et al., Project Sibyl: a novelty detection system for human spaceflight operations, SpaceOps 2016 Conf., AIAA, 2016. https://doi.org/10.2514/6.2016-2405

  95. ELKI Data Mining Framework. https://elki-project.github.io/ . Cited November 2, 2020.

  96. GOCE Telemetry Data Collection, Eur. Space Agency, 2019. https://doi.org/10.5270/esa-7nc8pjp

  97. Ganin, Y. et al., Domain-adversarial training of neural networks, J. Mach. Learn. Res., 2016, vol. 17, no. 59, pp. 1–35.

    MathSciNet  MATH  Google Scholar 

  98. Von Rueden, L. et al., Informed machine learning—a taxonomy and survey of integrating knowledge into learning systems, 2020. [cs, stat]. Cited April 9, 2020.

  99. Fink, O. et al., Potential, challenges and future directions for deep learning in prognostics and health management applications, Eng. Appl. Artif. Intell., 2020, p. 103678. https://doi.org/10.1016/j.engappai.2020.103678

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. A. Mukhachev, T. R. Sadretdinov, D. A. Pritykin, A. B. Ivanov or S. V. Solov’ev.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhachev, P.A., Sadretdinov, T.R., Pritykin, D.A. et al. Modern Machine Learning Methods for Telemetry-Based Spacecraft Health Monitoring. Autom Remote Control 82, 1293–1320 (2021). https://doi.org/10.1134/S0005117921080014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117921080014

Keywords

Navigation