Skip to main content
Log in

Design and performance analysis of compressed air adsorption dryer with heatless regeneration mode

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In many industrial processes compressed air free from traces of water vapour is essential. Adsorption dryer with heatless regeneration is used to treat air after compression to ultra-low dew point. A simple step by step design procedure for this dryer is presented. In this study, the adsorption dryer is developed based on layout design procedure, and optimal parametric conditions are obtained based on experimental design. Then the effect of process parameters on adsorption performance is studied for optimal conditions. The purge air required to achieve a varied range of pressure dew point of dry air at required operating pressure is suggested. The results revealed that a heatless regenerated adsorption system is suitable for the applications which involve feed air inlet temperature ranging from 25 to 45 °C, feed air operating pressure ranging from 5 bar, and pressure dew point of product dry air ranging from -40 to -70 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\({p}_{o}\) :

Absolute operating pressure

g:

Acceleration due to gravity

CSAadsorber :

Adsorber cross-sectional area

Vadsorber :

Adsorber volume

tL :

Adsorption time

Å:

Angstrom

Ɛ:

Bed voidage

m3/min:

Cubic metre per minute

°C:

Degree Celsius

DPT:

Dew point temperature

DBT:

Dry bulb temperature

tdwell :

Dwell time

Dp :

Effective particle diameter

\({RD}_{p}\) :

Effective particle diameter

Ve :

Effective volume flow referred to 1 bar

Ti :

Feed air inlet temperature

µfluid :

Fluid absolute viscosity

ėfluid :

Fluid density

fp :

Friction factor

Vm :

Gas superficial velocity

µ:

Gas viscosity

g:

Gram

gwv/m3 :

Gram water vapour per cubic meter

gwv/min:

Gram water vapour per minute

hp:

Horse power

Kw:

KiloWatt

kg:

Kilogram

L:

Length of bed

lpm:

Litre per minute

Ki :

Load factor

log:

Logarithmic value

MTZ:

Mass transfer zone

Phm :

Mean power requirement

m/s:

Meter per second

m:

Metre

hfilling-min :

Minimum filling height

hc :

Moisture load per cycle

NRV:

Non return valve

Nu:

Nusselt number

Vo :

Operating volume flow

Voc :

Operating volume per unit of time

Vregen air-outlet :

Outlet regeneration volume flow rate

Sp :

Particle surface area

Vp :

Particle volume

%:

Percent

PDPT:

Pressure dew point temperature

Δp adsorber :

Pressure drop

PSA:

Pressure swing adsorption

mdesiccant :

Quantity of desiccant

Vregen air :

Regeneration volume flow

R2 :

Regression coefficient

RH:

Relative humidity

Re:

Reynolds number

s:

Second

\({S}_{rh}\) :

Secondary relative humidity

Seq SS:

Sequential sum of squares

m2/s:

Square meter per second

U:

Superficial velocity

P-Value:

The attained level of significance

Vregen air :

Volume flow rate of regeneration air

References

  1. Air HQC (2007) A guide to ISO 8573 series. Compressed air quality standard, Compressed Air Quality Standard, pp 23–29

    Google Scholar 

  2. Bloch HP, Hoefner JJ (1996) Reciprocating compressors: operation and maintenance. Elsevier

    Google Scholar 

  3. Saidur R, Rahim NA, Hasanuzzaman M (2010) A review on compressed-air energy use and energy savings. Renew Sustain Energy Rev 14(4):1135–1153

    Article  Google Scholar 

  4. Pesaran AA (1994) Review of Desiccant Dehumidification Technology (No. NREL/TP-472–7010). National Renewable Energy Lab.(NREL), Golden, CO (United States)

  5. Huffmaster MA (2004) Gas dehydration fundamentals. In Proceedings of the Laurance Reid Gas Conditioning Conference. University of Oklahoma OUTREACH

  6. Misha S, Mat S, Ruslan MH, Sopian K (2012) Review of solid/liquid desiccant in the drying applications and its regeneration methods. Renew Sustain Energy Rev 16(7):4686–4707

    Article  Google Scholar 

  7. Bahrami M, Yovanovich MM, Culham JR (2006) Effective thermal conductivity of rough spherical packed beds. Int J Heat Mass Transf 49(19–20):3691–3701

    Article  Google Scholar 

  8. Dixon AG, van Dongeren JH (1998) The influence of the tube and particle diameters at constant ratio on heat transfer in packed beds. Chem Eng Process 37(1):23–32

    Article  Google Scholar 

  9. Liu J, LeVan MD (2009) Isosteric heats of adsorption in the Henry’s law region for carbon single wall cylindrical nanopores and spherical nanocavities. Carbon 47(15):3415–3423

    Article  Google Scholar 

  10. Kabeel AE (2009) Adsorption–desorption operations of multilayer desiccant packed bed for dehumidification applications. Renew Energy 34(1):255–265

    Article  Google Scholar 

  11. Tretiak CS, Abdallah NB (2009) Sorption and desorption characteristics of a packed bed of clay–CaCl2 desiccant particles. Sol Energy 83(10):1861–1870

    Article  Google Scholar 

  12. Douglas LeVan M, Carta G, Yon CM, In: Green Don W, Perry Robert H (eds) (1997) Adsorption and Ion Exchange. Perry’s Chemical Engineers’ Handbook, 7th edn. McGraw-Hill, New York, NY

    Google Scholar 

  13. Kannan V, Arjunan T (2017) Optimization of process parameters of pressure-swing adsorption cycle in a silica gel desiccant dehumidification system. J Adv Chem 13(10):6543–6551

    Article  Google Scholar 

  14. Phillips J, Kelly D, Radovic L, Xie F (2000) Microcalorimetric study of the influence of surface chemistry on the adsorption of water by high surface area carbons. J Phys Chem B 104(34):8170–8176

    Article  Google Scholar 

  15. Kadoli R, Babu TA (2012) Performance studies on the desiccant packed bed with varying particle size distribution along the bed. Int J Refrig 35(3):663–675

    Article  Google Scholar 

  16. Parker G (2001) Encyclopedia of materials: science and technology

  17. Gandhidasan P, Al-Farayedhi AA, Al-Mubarak AA (2001) Dehydration of natural gas using solid desiccants. Energy 26(9):855–868

    Article  Google Scholar 

  18. Golubovic MN, Hettiarachchi HDM, Worek WM (2006) Sorption properties for different types of molecular sieve and their influence on optimum dehumidification performance of desiccant wheels. Int J Heat Mass Transf 49(17–18):2802–2809

    Article  Google Scholar 

  19. Lu M, Song ZX (Eds.) (2004) Nanoporous materials: science and engineering (Vol. 4). World Scientific

  20. Schindler BJ, LeVan MD (2008) The theoretical maximum isosteric heat of adsorption in the Henry’s law region for slit-shaped carbon nanopores. Carbon 46(4):644–648

    Article  Google Scholar 

  21. Sircar S, Mohr R, Ristic C, Rao MB (1999) Isosteric heat of adsorption: theory and experiment. J Phys Chem B 103(31):6539–6546

    Article  Google Scholar 

  22. Rady MA, Huzayyin AS, Arquis E, Monneyron P, Lebot C, Palomo E (2009) Study of heat and mass transfer in a dehumidifying desiccant bed with macro-encapsulated phase change materials. Renew Energy 34(3):718–726

    Article  Google Scholar 

  23. Won W, Lee S, Lee KS (2012) Modeling and parameter estimation for a fixed-bed adsorption process for CO2 capture using zeolite 13X. Sep Purif Technol 85:120–129

    Article  Google Scholar 

  24. Gutsche R, Bunke G (2008) Modelling the liquid-phase adsorption in packed beds at low Reynolds numbers: An improved hydrodynamic model. Chem Eng Sci 63(16):4203–4217

    Article  Google Scholar 

  25. Hamed AM (2002) Theoretical and experimental study on the transient adsorption characteristics of a vertical packed porous bed. Renew Energy 27(4):525–541

    Article  Google Scholar 

  26. Jakobsen HA (2008) Chemical reactor modeling. Multiphase Reactive Flows

  27. Biegler LT, Jiang L, Fox VG (2005) Recent advances in simulation and optimal design of pressure swing adsorption systems. Sep Purif Rev 33(1):1–39

    Article  Google Scholar 

  28. Kvamsdal HM, Hertzberg T (1995) Pressure swing adsorption-optimization of a trace separation system. Comput Chem Eng 19:339–344

    Article  Google Scholar 

  29. Lewandowski J, Lemcoff NO, Palosaari S (1998) Use of neural networks in the simulation and optimization of pressure swing adsorption processes. Chem Eng Technol: Indust Chem Plant Equip Process Eng Biotechnol 21(7):593–597

    Article  Google Scholar 

  30. Rajasree R, Moharir AS (2000) Simulation based synthesis, design and optimization of pressure swing adsorption (PSA) processes. Comput Chem Eng 24(11):2493–2505

    Article  Google Scholar 

  31. Smith OJ IV, Westerberg AW (1991) The optimal design of pressure swing adsorption systems. Chem Eng Sci 46(12):2967–2976

    Article  Google Scholar 

  32. Yeboah SK, Darkwa J (2016) A critical review of thermal enhancement of packed beds for water vapour adsorption. Renew Sustain Energy Rev 58:1500–1520

    Article  Google Scholar 

  33. Venkatachalam SK, Thottipalayam VA, Selvaraj V (2020) Low‐temperature drying characteristics of mint leaves in a continuous‐dehumidified air drying system. J Food Process Eng 43(4), e13384

  34. Crittenden B, Thomas WJ (1998) Adsorption technology and design. Elsevier

    Google Scholar 

  35. Rezaei F, Grahn M (2012) Thermal management of structured adsorbents in CO2 capture processes. Ind Eng Chem Res 51(10):4025–4034

    Article  Google Scholar 

  36. Kannan VS, Arjunan TV, Vijayan S (2021) Drying characteristics of mint leaves (Mentha arvensis) dried in a solid desiccant dehumidifier system. J Food Sci Technol 58(2):777–786

    Article  Google Scholar 

  37. Kannan VS, Arjunan TV, Vijayan S (2020) Experimental investigation of temperature swing adsorption system for air dehumidification. Heat Mass Transf 56(7):2093–2105

    Article  Google Scholar 

  38. Sureshkannan V, Arjunan TV, Seenivasan D, Anbuudayasankar SP, Arulraj M (2021) Parametric study on pressure-based packed bed adsorption system for air dehumidification. Proc Inst  Mech Eng Part E: J Process Mech Eng 09544089211007318

  39. Venkatachalam S, Vellingri AT (2019) Optimization of process parameters of adsorption process in solid desiccant dehumidification system using genetic algorithm. J Chinese Soc Mech Eng 40:547–553

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Sureshkannan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sureshkannan, V., Vijayan, S. & Lenin, . . Design and performance analysis of compressed air adsorption dryer with heatless regeneration mode. Heat Mass Transfer 58, 631–641 (2022). https://doi.org/10.1007/s00231-021-03136-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-021-03136-4

Navigation