Skip to main content
Log in

Preparation of CZTS film by electro-deposition method: study on the principle of deposition and film performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In recent years, the electrodeposition method had many advantages in large-area, low-cost preparation of thin-film solar cells. It was accelerating the commercialization of thin-film solar cells. In this work, electrochemical methods explored the electrodeposition mechanism of Cu2ZnSnS4(CZTS). The best sweep speed was 0.1 V s−1 by the cyclic voltammetry test. At the same time, it revealed that the deposition of CZTS film followed a chemical reaction preceding a reversible electron transfer (CE mechanism). The overall reaction rate was controlled by the slower chemical reaction. The electrode reaction product was not electrically active at the reduction potential. During the deposition, the Cu ions first deposited, then Zn ions and Sn ions deposited, and finally, S2O32− reduced to elemental S. Also, the addition of sodium citrate made the deposition potential of each element closer. Atomic force microscope and scanning electronic microscope showed that the heat-treated CZTS film was smooth and compact. UV–Vis spectra manifested that the CZTS film bandgap of 1.43 eV has a good match with solar radiation. The IV curve offset was 35.23%. The short-circuit current density was 0.14 mA cm−2. The open-circuit voltage was 230 mV. The fill factor was 25%, and the cell efficiency was 1.56 × 10–3%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.A. Basit, F. Raza, Sumayya, G. Karima, I. Ali, S. Butt, J. Mater. Sci. Mater. Electron. 31, 17563–17573(2020) https://doi.org/10.1007/s10854-020-04312-8.

  2. S. Vallisree, A. Ghosh, R. Thangavel, T.R. Lenka, J. Mater. Sci. Mater. Electron. 29, 7273 (2018). https://doi.org/10.1007/s10854-018-8715-y

    Article  CAS  Google Scholar 

  3. R.J. Deokate, R.S. Kate, S.C. Bulakhe, J. Mater. Sci. Mater. Electron. 30, 3530–3538 (2019). https://doi.org/10.1007/s10854-018-00630-0

    Article  CAS  Google Scholar 

  4. E.M. Mkawi, K. Ibrahim, M.K.M. Ali, K.M.A. Saron, M.A. Farrukh, N.K. Allam, J. Mater. Sci. Mater. Electron. 26, 222–228 (2015). https://doi.org/10.1007/s10854-014-2387-z

    Article  CAS  Google Scholar 

  5. M.A. Olgar, A. Seyhan, A.O. Sarp, R. Zan, J. Mater. Sci. Mater. Electron. 31, 20620–20631 (2020). https://doi.org/10.1007/s10854-020-04582-2

    Article  CAS  Google Scholar 

  6. S.B. Patel, J.V. Gohel, J. Mater. Sci. Mater. Electron. 29, 18151–18158 (2018). https://doi.org/10.1007/s10854-018-9927-x

    Article  CAS  Google Scholar 

  7. H. Zheng, Y. Liu, J. Mater. Sci. Mater. Electron. 32, 4125–4131 (2021). https://doi.org/10.1007/s10854-020-05153-1

    Article  CAS  Google Scholar 

  8. P. Prabeesh, V.G. Sajeesh, I. Packia Selvam, S.N. Potty, J. Mater. Sci. Mater. Electron. 32, 4146–4156 (2021) https://doi.org/10.1007/s10854-020-05156-y

  9. V.A. Madiraju, K. Taneja, M. Kumar, R. Seelaboyina, J. Mater. Sci. Mater. Electron. 27, 3152–3157 (2016). https://doi.org/10.1007/s10854-015-4137-2

    Article  CAS  Google Scholar 

  10. A.V. Moholkar, S.S. Shinde, A.R. Babar, K.U. Sim, Y.B. Kwon, K.Y. Rajpure, P.S. Patil, C.H. Bhosale, J.H. Kim, Sol. Energy 85, 1354–1363 (2011). https://doi.org/10.1016/j.solener.2011.03.017

    Article  CAS  Google Scholar 

  11. V.A. Moholkar, S.S. Shinde, L.G. Agawane, H.S. Jo, Y.K. Rajpure, J. Alloy. Compd. 544, 145–151 (2012). https://doi.org/10.1016/j.jallcom.2012.07.108

    Article  CAS  Google Scholar 

  12. N.M. Shindea, C.D. Lokhande, J.H. Kim, J.H. Moon, J. Photoch. Photobio. A 235, 14–20 (2012). https://doi.org/10.1016/j.jphotochem.2012.02.006

    Article  CAS  Google Scholar 

  13. M. Cao, L. Li, B.L. Zhang, J. Huang, L.J. Wang, Y. Shen, Y. Sun, J.C. Jiang, G.J. Hu, Sol. Energ. Mat. Sol. C 117, 81–86 (2013). https://doi.org/10.1016/j.solmat.2013.05.039

    Article  CAS  Google Scholar 

  14. J. Lehner, M. Ganchev, M. Loorits, N. Revathi, T. Raadik, J. Raudoja, M. Grossberg, E. Mellikov, O. Volobujeva, J. Cryst. Growth. 380, 236–340 (2013). https://doi.org/10.1016/j.jcrysgro.2013.06.012

    Article  CAS  Google Scholar 

  15. S. Ahmed, K.B. Reuter, O. Gunawan, L. Guo, L.T. Romankiw, H. Deligianni, Adv. Energy. Mater. 2, 253–259 (2012). https://doi.org/10.1002/aenm.201100526

    Article  CAS  Google Scholar 

  16. E.M. Mkawi, K. Ibrahim, M.K.M. Ali, M.A. Farrukh, A.S. Mohamed, J. Mater. Sci. Mater. Electron. 25, 857–863 (2014). https://doi.org/10.1007/s10854-013-1657-5

    Article  CAS  Google Scholar 

  17. Y. Li, T. Yuan, L. Jiang, F. Liu, Y. Liu, Y. Lai, J. Mater. Sci. Mater. 26, 204–210 (2015). https://doi.org/10.1007/s10854-014-2384-2

    Article  CAS  Google Scholar 

  18. K. Zhang, J. Tao, J. He, W. Wang, L. Sun, P. Yang, J. Chu, J. Mater. Sci. Mater. 25, 2703–2709 (2014). https://doi.org/10.1007/s10854-014-1932-0

    Article  CAS  Google Scholar 

  19. D. Seo, C. Kim, E. Oh, C.W. Hong, J.H. Kim, S. Lim, J. Mater. Sci. Mater. 25, 3420–3426 (2014). https://doi.org/10.1007/s10854-014-2034-8

    Article  CAS  Google Scholar 

  20. D. Seo, S. Lim, J. Mater. Sci. Mater. 24, 3756–3763 (2013). https://doi.org/10.1007/s10854-013-1314-z

    Article  CAS  Google Scholar 

  21. P. Termsaithong, R. Munprom, A. Shah, A. Rodchanaowan, Surf. Coat. Tech. 350, 807–812 (2018). https://doi.org/10.1016/j.surfcoat.2018.04.045

    Article  CAS  Google Scholar 

  22. C. Malerba, F. Biccari, C.L.A. Ricardo, M. Valentini, R. Chierchia, M. Müller, A. Santoni, E. Esposito, P. Mangiapane, P. Scardi, A. Mittiga, J. Alloy. Compd. 582, 528–534 (2014). https://doi.org/10.1016/j.jallcom.2013.07.199

    Article  CAS  Google Scholar 

  23. H. Katagiri, K. Jimbo, W.S. Maw, K. Oishi, M. Yamazaki, H. Araki, A. Takeuchi, Thin Solid Films 517, 2455–2460 (2009). https://doi.org/10.1016/j.tsf.2008.11.002

    Article  CAS  Google Scholar 

  24. M. Zhou, Y. Gong, J. Xu, G. Fang, Q. Xu, J. Dong, J. ALLOY. COMPD. 574, 272–277 (2013). https://doi.org/10.1016/j.jallcom.2013.05.143

    Article  CAS  Google Scholar 

  25. V.A. Akhavan, B.W. Goodfellow, M.G. Panthani, C. Steinhagen, T.B. Harvey, C. Jackson Stolle, B.A. Korgel, J. Solid. State. Chem. 189, 2–12(2012) https://doi.org/10.1016/j.jssc.2011.11.002.

  26. T.S. Shyjua, S. Anandhi, R. Suriakarthick, R. Gopalakrishnan, P. Kuppusami, J. Solid. State. Chem. 227, 165–177 (2015). https://doi.org/10.1016/j.jssc.2015.03.033

    Article  CAS  Google Scholar 

  27. V. Kheraj, K.K. Patel, S.J. Patel, D.V. Shah, J. CRYST. GROWTH. 362, 174–177 (2013). https://doi.org/10.1016/j.jcrysgro.2011.10.034

    Article  CAS  Google Scholar 

  28. S.W. Shin, S.M. Pawar, C.Y. Park, J.H. Yun, J. Moon, J.H. Kim, J.Y. Lee, Sol. Energ. Mat. Sol. C 95, 12, 3202–3206(2011) https://doi.org/10.1016/j.solmat.2011.07.005.

  29. S.B. Patel, A.H. Patel, J.V. Gohel, CrystEngComm 20(47), 7677–7687 (2018). https://doi.org/10.1039/C8CE01337C

    Article  CAS  Google Scholar 

  30. Z.O. Elhmaidi, R. Pandiyan, M. Abd-Lefdil, E. Saucedo, M.A.E. Khakani, Appl. Surf. Sci. 507, 145003 (2020). https://doi.org/10.1016/j.apsusc.2019.145003

    Article  CAS  Google Scholar 

  31. B. Ziti, H. Hartiti, S. Labrim, H.J.T. Fadili, A. Nkuissi, M. Ridah, P. Tahri, Thevenin. Appl. Phys. A-Mater. 125, 218 (2019). https://doi.org/10.1007/s00339-019-2513-0

    Article  CAS  Google Scholar 

  32. H. Song, S. Son, S.K. Kim, G.Y. Jung, Nano. Res. 8, 3553–3561 (2015). https://doi.org/10.1007/s12274-015-0855-2

    Article  CAS  Google Scholar 

  33. B. Gržeta, E. Tkalčec, C. Goebbert, M. Takeda, M. Takahashi, K. Nomura, M. Jakšić, J. Phys. Chem. Solids 63, 765–772 (2002). https://doi.org/10.1016/S0022-3697(01)00226-8

    Article  Google Scholar 

  34. X. Zhang, Y. Zhang, Y. Song, Z. Wang, D. Yu, Physica E-Low-dimesional Systems and Nanostructures 28, 1–6 (2004). https://doi.org/10.1016/j.physe.2004.12.022

    Article  CAS  Google Scholar 

  35. S. Iqbal, A. Bahadur, S. Anwer, S. Ali, R.M. Irfan, H. Li, M. Shoaib, M. Raheel, T.A. Anjum, M. Zulqarnain, Colloid. Surf. A 601, 124984 (2020). https://doi.org/10.1016/j.colsurfa.2020.124984

    Article  CAS  Google Scholar 

  36. F. Jiang, H. Shen, W. Wang, J. Electron. Mater. 41. 2204–2209(2012) https://doi.org/10.1007/s11664-012-2112-8.

  37. X. Gu, S. Zhang, Y. Qiang, Y. Zhao, L. Zhu, J. Electron. Mater. 43, 2709–2714 (2014). https://doi.org/10.1007/s11664-014-3200-8

    Article  CAS  Google Scholar 

  38. A. Ziti, B. Hartiti, H. Labrim, S. Fadili, A. Batan, M. Tahri, A. Ridah, O. Mounkachi, A. Benyoussef, P. Thevenin, J. Mater. SCI-Mater. El. 30, 13134–13143 (2019). https://doi.org/10.1007/s10854-019-01676-4

    Article  CAS  Google Scholar 

  39. H. Borate, A. Bhorde, A. Waghmare, S. Nair, S. Pandharkar, A. Punde, P. Shinde, P. Vairale, V. Jadkar, R. Waykar, S. Rondiya, Y. Hase, R. Aher, N. Patil, M. Prasad, S. Jadkar, ES Mater. Manuf. 11, 30–39(2021) https://dx.doi.org/https://doi.org/10.30919/esmm5f934.

  40. B. Liu, J. Guo, R. Hao, L. Wang, K. Gu, S. Sun, Sol. Energy 201, 219–226 (2020). https://doi.org/10.1016/j.solener.2020.02.088

    Article  CAS  Google Scholar 

  41. S. Varadharajaperumal, D. Alagarasan, R. Ganesan, M.N. Satyanarayan, G. Hegde, Mat. SCI. Semicon. Proc. 106, 104763 (2020). https://doi.org/10.1016/j.mssp.2019.104763

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China [grant numbers 21706043].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libo Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 100 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, W., Li, L., Xu, Y. et al. Preparation of CZTS film by electro-deposition method: study on the principle of deposition and film performance. J Mater Sci: Mater Electron 32, 25188–25200 (2021). https://doi.org/10.1007/s10854-021-06975-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06975-3

Navigation