Skip to main content
Log in

Flower-like CuO/NiO nanostructures decorated activated carbon nanofiber membranes for flexible, sensitive, and selective enzyme-free glucose detection

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The conversion of insulating polymeric membrane into conducting activated carbon nanofiber (ACF) membrane and the decoration of consequent fibers with flower-like CuO/NiO nanoarchitectures are accomplished, respectively, via the carbonization and electrodeposition processes. The glucose utilization efficacy of CuO/NiO/ACF is accelerated through the diffusion and adsorption of analyte into the nanofibers’ voids and stacked layers, respectively, of ACF and flower-like architectures. The conducting carbon web, binary metal oxide synergism, and porous architecture of CuO/NiO/ACF proliferate the considerable sensitivity (247 µA mM−1 cm−2), low sensing limit (146 nM), and wide linear range (0.00025–5 mM) on glucose sensing along with the real sample analysis. The concordant electrochemical glucose oxidation behavior realized at different bending angles exposes the flexibility of CuO/NiO/ACF. Thus, the free-standing, flexible, binder-less, recyclable, and cost-and time-effective features of CuO/NiO/ACF convenience the glucose detection, affording an innovative technological platform for the evolution of high performance and durable glucose sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Tsai, E.S. Ford, C. Li, G. Zhao, L.S. Balluz, Physical activity and optimal self-rated health of adults with and without diabetes. BMC Public Health 10, 365–373 (2010)

    Article  Google Scholar 

  2. C. Rivet, H. Lee, A. Hirsch, S. Hamilton, H. Lu, Microfluidics for medical diagnostics and biosensors. Chem. Eng. Sci. 66, 1490–1507 (2011)

    Article  CAS  Google Scholar 

  3. S.A. Zaidi, J.H. Shin, Recent developments in nanostructures based elecrochemcial glucose sensors. Talanta 149, 30–42 (2016)

    Article  CAS  Google Scholar 

  4. G.G. Kumar, G. Amala, S.M. Gowtham, Recent advancements, key challenges and solutions in non-enzymatic electrochemical glucose sensors based on graphene platforms. RSC Adv. 7, 36949–36976 (2017)

    Article  Google Scholar 

  5. P.P. Tomanin, P.V. Cherepanov, Q.A. Besford, A.J. Christofferson, A. Amodio, C.F. McConville, I. Yarovsky, F. Caruso, F. Cavalieri, Cobalt phosphate nanostructures for non-enzymatic glucose sensing at physiological pH. ACS Appl. Mater. Inter. 10, 42786–42795 (2018)

    Article  CAS  Google Scholar 

  6. L. Zhao, G. Wu, Z. Cai, T. Zhao, Q. Yao, X. Chen, Ultrasensitive non-enzymatic glucose sensing at near-neutral pH values via anodic stripping voltammetry using a glassy Carbon electrode modified with Pt3Pd nanoparticles and reduced graphene oxide. Microchim. Acta 182, 2055–2060 (2015)

    Article  CAS  Google Scholar 

  7. X. Wang, Y. Zheng, J. Yuan, J. Shen, J. Hu, A.J. Wang, L. Wu, L. Niu, Three-dimensional NiCo layered double hydroxide nanosheets array on carbon cloth, facile preparation and its application in highly sensitive enzymeless glucose detection. Electrochim. Acta 224, 628–635 (2017)

    Article  CAS  Google Scholar 

  8. G. Wang, X. He, L. Wang, A. Gu, Y. Huang, B. Fang, B. Geng, X. Zhang, Non-enzymatic electrochemical sensing of glucose. Microchim. Acta 180, 161–186 (2013)

    Article  CAS  Google Scholar 

  9. Y. Bai, W. Yang, Y. Sun, C. Sun, Enzyme-free glucose sensor based on a three-dimensional gold film electrode. Sens. Actuators B Chem. 134, 471–476 (2008)

    Article  CAS  Google Scholar 

  10. J. Zhang, X. Xiao, Q. He, L. Huang, S. Li, F. Wang, A nonenzymatic glucose sensor based on a copper nanoparticle-zinc oxide nanorod array. Anal. Lett. 47, 1147–1161 (2014)

    Article  CAS  Google Scholar 

  11. T. Wang, Y. Yu, H. Tian, J. Hu, A novel non-enzymatic glucose sensor based on cobalt nanoparticles implantation-modified indium tin oxide electrode. Electroanalysis 26, 1–9 (2014)

    Article  Google Scholar 

  12. Y.L.T. Ngo, L. Sui, W. Ahn, J.S. Chung, S.H. Hur, NiMnO4 spinel binary nanostructure decorated on three-dimensional reduced graphene oxide hydrogel for bifunctional materials for non-enzymatic glucose sensor. Nanoscale 9, 19318–19327 (2017)

    Article  CAS  Google Scholar 

  13. J. Yang, W. Tan, C. Chen, Y. Tao, Y. Qin, Y. Kong, Nonenzymatic glucose sensing by CuO nanoparticles decorated nitrogen-doped graphene aerogel. Mater. Sci. Eng. C 78, 210–217 (2017)

    Article  CAS  Google Scholar 

  14. M. Ma, W. Zhu, D. Zhao, Y. Ma, N. Hu, Y. Suo, J. Wang, Surface engineering of nickel selenide nanosheets array on nickel foam: an integrated anode for glucose sensing. Sens. Actuators B Chem. 278, 110-116[J] (2019)

    Article  CAS  Google Scholar 

  15. M. Zhang, A. Halder, C. Hou, J. Ulstrup, Q. Chi, Free-standing and flexible graphene papers as disposable non-enzymatic electrochemical sensors. Bioelectrochemistry 109, 87–94 (2016)

    Article  CAS  Google Scholar 

  16. A. Senthamizhan, B. Balusamy, T. Uyar, Glucose sensors based on electrospun nanofibers: a review. Anal. Bioanal. Chem. 408, 1285–1306 (2016)

    Article  CAS  Google Scholar 

  17. D.W. Twang, S. Lee, M. Seo, T.D. Chung, Recent advances in electrochemical non-enzymatic glucose sensors—a review. Anal. Chim. Acta 1033, 1–34 (2018)

    Article  Google Scholar 

  18. K. Tian, M. Prestgard, A. Tiwari, A review of recent advances in nonenzymatic glucose sensors. Mater. Sci. Eng. 41, 100–118 (2018)

    Article  Google Scholar 

  19. Q. Bao, C.M. Li, L. Liao, H. Yang, W. Wang, C. Ke, Q. Song, H. Bao, T. Yu, K.P. Loh, J. Guo, Electrical transport and photovoltaic effects of core–shell CuO/C60 nanowire hetero structure. Nanotechnology 20, 065203–065210 (2009)

    Article  Google Scholar 

  20. Y. Zhong, T. Shi, Z. Liu, S. Cheng, Y. Huang, X. Taol, G. Liao, Z. Tang, Ultrasensitive non-enzymatic glucose sensors based on different copper oxide nanostructures by in-situ growth. Sens. Actuators B Chem. 236, 326–333 (2016)

    Article  CAS  Google Scholar 

  21. P. Thongbai, T. Yamwong, S. Maensiri, Correlation between giant dielectric response and electrical conductivity of CuO ceramic. Solid State Commun. 147, 385–387 (2008)

    Article  CAS  Google Scholar 

  22. Y.B. Zhang, J. Yin, L. Li, L.X. Zhang, L.J. Bie, Enhanced ethanol gas-sensing properties of flower-like p-CuO/n-ZnO heterojunction nanorods. Sens. Actuators B Chem. 202, 500–507 (2014)

    Article  CAS  Google Scholar 

  23. T.R. Kumar, K.J. Babu, D.J. Yoo, A.R. Kim, G.G. Kumar, Binder free and free-standing electrospun membrane architecture for sensitive and selective non-enzymatic glucose sensors. RSC Adv. 5, 41457–41467 (2015)

    Article  Google Scholar 

  24. J. Zhang, X. Zhu, H. Dong, X. Zhang, W. Wang, Z. Chen, In situ growth cupric oxide nanoparticles on carbon nanofibers for sensitive non enzymatic sensing of glucose. Electrochim. Acta 105, 433–438 (2013)

    Article  CAS  Google Scholar 

  25. Y. Zhong, T. Shi, Z. Liu, S. Cheng, Y. Huang, X. Tao, G. Liao, Z. Tang, Ultrasensitive non-enzymatic glucose sensors based on different copper oxide nanostructures by in-situ growth. Sens. Actuators B Chem. 236, 326–333 (2016)

    Article  CAS  Google Scholar 

  26. S.M. Saufi, A.F. Ismail, Development and characterization of polyacrylonitrile (PAN) based carbon hollow fiber membrane. Membr. Sci. Technol. 24, 843–854 (2002)

    CAS  Google Scholar 

  27. B. Zhang, Y. Yu, Z.L. Xu, S. Abouali, M. Akbari, Y.B. He, F. Kang, J.K. Kim, Correlation between atomic structure and electrochemical performance of anodes made from electrospun carbon nanofiber films. Adv. Energy Mater. 4, 1301448–1301456 (2013)

    Article  Google Scholar 

  28. M. Figiela, M. Wysokowski, M. Galinski, T. Jesionowski, I. Stepniak, Synthesis and characterization of novel copper oxide-chitosan nanocomposites for non-enzymatic glucose sensing. Sens. Actuators B Chem. 272, 296–307 (2018)

    Article  CAS  Google Scholar 

  29. S.K. Shinde, D.P. Dubal, G.S. Ghodake, V.J. Fulari, Hierarchical 3D-flower-like CuO nanosructure on copper foil for supercapacitors. RSC Adv. 5, 1–19 (2015)

    Article  CAS  Google Scholar 

  30. P. Tamilarasan, S. Ramaprabhu, Graphene based all-solid-state supercapacitors with ionic liquid incorporated polyacrylonitrile electrolyte. Energy 51, 374–381 (2013)

    Article  CAS  Google Scholar 

  31. Y. Huang, F. Cui, Y. Zhao, J. Lian, J. Bao, H. Li, Controlled growth of ultrathin NiMoO4 nanosheets on carbon nanofiber membrane as advanced electrodes for asymmetric supercapacitors. J. Alloys Compd. 753, 176–185 (2018)

    Article  CAS  Google Scholar 

  32. X. Duan, H. Huang, S. Xiao, J. Deng, G. Zhou, Q. Li, T. Wang, 3D herarchical CuO mesocrystals from ionic liquid precursor: towards better electrochemical performance for Li-ion Batteries. J. Mater. Chem. A 4, 8402–8411 (2016)

    Article  CAS  Google Scholar 

  33. C. Dong, X. Xiao, G. Chen, H. Guan, Y. Wang, I. Djerdj, Porous NiO nanosheets self-grown on alumina tube using a novel flash synthesis and their gas sensing properties. RSC Adv. 5, 4880–4885 (2015)

    Article  CAS  Google Scholar 

  34. R. Zhao, Y. Wang, X. Li, B. Sun, Y. Li, H. Ji, J. Qiu, C. Wang, Surface activated hydrothermal carbon-coated electrospun PAN fiber membrane with enhanced adsorption properties for herbicide. ACS Sustain. Chem. Eng. 4, 2584–2592 (2016)

    Article  CAS  Google Scholar 

  35. J.H. Zhou, Z.J. Sui, J. Zhu, P. Li, D. Chen, Y.C. Dai, W.K. Yuan, Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR. Carbon 45, 785–796 (2007)

    Article  CAS  Google Scholar 

  36. G.H. Tsai, P.H. Fei, C.M. Lin, S.L. Shiu, CuO and CuO/Graphene nanostructured thin films as counter electrodes for Pt-Free dye-sensitized solar cells. Coatings 8, 21–33 (2018)

    Article  Google Scholar 

  37. J. Saravanan, R. Ramasamy, H.A. Therese, G. Amala, G.G. Kumar, Electrospun CuO/NiO composite nanofibers for sensitive and selective non-enzymatic nitrite sensors. New J. Chem. 41, 14766–14771 (2017)

    Article  CAS  Google Scholar 

  38. Y. Wang, F. Qu, J. Liu, Y. Wang, J. Zhou, S. Ruan, Enhanced H2S sensing characteristics of CuO-NiO core-shell microspheres sensors. Sens. Actuators B Chem. 209, 515–523 (2015)

    Article  CAS  Google Scholar 

  39. E.A.D.S. Filho, E.F. Pieretti, R.T. Bento, M.F. Pillis, Effect of nitrogen-doping on the surface chemistry and corrosion stability of TiO2 films. J. Mater. Res. Technol. 9(1)), 922–934 (2020)

    Article  Google Scholar 

  40. S. Zhu, J. Lei, Y. Qin, L. Zhang, L. Lu, Spinal oxide CoFe2O4 grown on Ni foam as an efficient electrocatalyst for oxygen evolution reaction. RSC Adv. 9, 13269–13274 (2019)

    Article  CAS  Google Scholar 

  41. D.P. Dubal, G.S. Gund, R. Holze, H.S. Jadhav, C.D. Lokhande, C.J. Park, Surfactant-assisted morphological tuning of hierarchical CuO thin films for electrochemical supercapacitors. Dalton Trans. 42, 6459–6467 (2013)

    Article  CAS  Google Scholar 

  42. Z. Qiu, H. Gong, G. Zheng, S. Yuan, H. Zhang, X. Zhu, H. Zhou, B. Cao, Enhanced physical properties of pulsed laser deposited NiO films via annealing and lithium doping for improving perovskite solar cell efficiency. J. Mater. Chem. C 5, 7084–7094 (2017)

    Article  CAS  Google Scholar 

  43. E. Mirzael, J. Ai, M. Sorouri, H. Ghanbari, J. Verdi, R.F. Majidi, Functionalization of PAN based electrospun carbon nanofibers by acid oxidation: study of structural, electrical and mechanical properties. Fuller. Nanotubes Carbon Nanostruct. 3, 1–30 (2015)

    Google Scholar 

  44. Y. Hou, S. Cui, Z. Wen, X. Guo, X. Feng, J. Chen, Strongly coupled 3D hybrids of N-doped porous carbon nanosheet/CoNi alloy-encapsulated carbon nanotubes for enhanced Electrocatalysis. Small 11, 5940–5948 (2015)

    Article  CAS  Google Scholar 

  45. Y. Chen, H. Zhang, H. Xue, X. Hu, G. Wang, C. Wang, Construction of a non-enzymatic glucose sensor based on copolymer P4VP-co-PAN and Fe2O3 nanoparticles. Mater. Sci. Eng. 35, 420–425 (2014)

    Article  CAS  Google Scholar 

  46. Z. Sun, Y. Jiang, L. Zeng, X. Zhang, S. Hu, L. Huang, Controllable local electronic migration induced charge separation and red-shift emission in carbon nitride for enhanced photocatalysis and potential phototherapy. Chem. Commun. 55, 6002–6005 (2019)

    Article  CAS  Google Scholar 

  47. D. Geng, S. Yang, Y. Zhang, J. Yang, J. Liu, R. Li, T.K. Sham, X. Sun, S. Ye, S. Knights, Nitrogen doping effects on the structure of graphene. Appl. Surf. Sci. 257, 9193–9198 (2011)

    Article  CAS  Google Scholar 

  48. Q. Wang, Y. Ma, X. Jiang, N. Yang, Y. Coffinier, H. Belkhalfa, N. Dokhane, M. Li, R. Boukherroub, S. Szunerits, Electrophoretic deposition of carbon nanofibers/Co(OH)2 nanocomposites: application for non-enzymatic glucose sensing. Elecroanalysis 28, 119–125 (2016)

    Article  Google Scholar 

  49. V. Archana, Y. Xia, R. Fang, G.G. Kumar, Hierarchical CuO/NiO-carbon nanocomposite derived from metal organic framework on cello tape for the flexible and high performance nonenzymatic electrochemical glucose sensors. ACS Sustain. Chem. Eng. 7, 6707–6719 (2019)

    Article  CAS  Google Scholar 

  50. D. Pletcher, Electrocatalysis: present and future. J. Appl. Electrochem. 14, 403–415 (1984)

    Article  CAS  Google Scholar 

  51. S.K. Meher, G.R. Rao, Archetypal sandwich-structured CuO for high performance non-enzymatic sensing of glucose. Nanoscale 5, 2089–2099 (2013)

    Article  CAS  Google Scholar 

  52. L. Liu, Z. Wang, J. Yang, G. Liu, J. Li, S. Chen, Q. Guo, NiCo2O4 nanoneedle-decorated electrospun carbon nanofiber nanohybrids for sensitive non-enzymatic glucose sensors. Sens. Actuators B Chem. 258, 920–928 (2018)

    Article  CAS  Google Scholar 

  53. K.J. Babu, S. Sheet, Y.S. Lee, G.G. Kumar, Three-dimensional dendrite Cu-Co/reduced graphene oxide architectures on a disposable pencil graphite electrode as an electrochemical sensor for nonenzymatic glucose detection. ACS Sustain. Chem. Eng. 6, 1909–1918 (2018)

    Article  Google Scholar 

  54. R. Qiu, X.L. Zhang, R. Qiao, Y. Li, Y. Kim, Y.S. Kang, CuNi dendritic material: synthesis, mechanism discussion, and application as glucose sensor. Chem. Mater. 19, 4174–4180 (2007)

    Article  CAS  Google Scholar 

  55. K.J. Babu, T. Rajkumar, D.J. Yoo, P. Siew-Moi, G.G. Kumar, Electrodeposited nickel cobalt sulphide flower-like architectures on disposable cellulose filter paper for enzyme-free glucose sensor applications. ACS Sustain. Chem. Eng. 6, 16982–16989 (2018)

    Article  CAS  Google Scholar 

  56. S. Shakir, J. Saravanan, N. Rizan, K.J. Babu, Md.A. Aziz, P.S. Moi, V. Periasamy, G.G. Kumar, Fabrication of capillary force induced DNA template Ag nanopatterns for sensitive and selective enzyme-free glucose sensors. Sens. Actuators B Chem. 256, 820–827 (2018)

    Article  CAS  Google Scholar 

  57. P. Salazar, V. Rico, A.R. Gonzalez-Elipe, Nickel–copper bilayer nanoporous electrode prepared by physical vapor deposition at oblique angles for the non-enzymatic determination of glucose. Sens. Actuators B Chem. 226, 436–443 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research effort was supported by the Council of Scientific and Industrial Research (CSIR), New Delhi Major Project Grant No.: 01(2997)19/EMR-II and Department of Science & Technology (DST), New Delhi Major Project Grant No.: DST/TMD/HFC/2K18/52. The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Research Group Project under grant number R.G.P.2/96/42.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Gnana kumar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 462.7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saravanan, J., Pannipara, M., Al-Sehemi, A.G. et al. Flower-like CuO/NiO nanostructures decorated activated carbon nanofiber membranes for flexible, sensitive, and selective enzyme-free glucose detection. J Mater Sci: Mater Electron 32, 24775–24789 (2021). https://doi.org/10.1007/s10854-021-06927-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06927-x

Navigation