Skip to main content
Log in

The influence of seed layer electroplating time on structural properties, optical energy bandgap, diameter, growth orientation and surface roughness of ZnO nanorods

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, the influence of the seed layer electroplating time (tseed layer) on the structural properties, optical energy bandgap, diameter, growth orientation and surface roughness of zinc oxide (ZnO) nanorods (NRs) electrochemically deposited from an oxygenated aqueous zinc chloride electrolyte solution was studied. Prior to actual electrochemical fabrication of subsequent ZnO NRs, the ZnO seed layers were first electroplated on the indium tin oxide (ITO) covered glass substrates at different tseed layer values of 25 s, 50 s and 100 s under a constant current density. The subsequent ZnO NRs were electrochemically deposited on the prepared ZnO seed layers at a constant cathode potential. For comparison, the ZnO NRs was also deposited on the ITO-covered glass substrates without a seed layer (tseed layer = 0 s). The surface morphologies of the ZnO NRs were characterized using an atomic force microscopy and a scanning electron microscopy. The results revealed that the shape of the ZnO NRs is affected by the tseed layer value and the diameter and surface roughness of the ZnO NRs can be reduced considerably by controlling the tseed layer. The ZnO sample grown at the tseed layer of 50 s consisted of completely hexagonal-shaped NRs with the smallest mean diameter and exhibited the smoothest top surface. X-ray diffraction measurements confirmed the creation of the hexagonal wurtzite crystal structure for all samples. The ZnO NRs fabricated at the tseed layer of 50 s displayed the best preferential growth orientation along c-axis. Structural analysis also showed that the samples have nano-sized crystallites ranging from 50 to 56 nm. The ZnO NRs without the seed layer had an energy bandgap of 3.318 eV while the ZnO NRs prepared on the seed layers exhibited an energy bandgap value in the range of 3.370 ± 0.006 eV, which was inversely proportional to the mean crystallite size of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Zinatloo-Ajabshir, S.A. Heidari-Asil, M. Salavati-Niasari, Recyclable magnetic ZnCo2O4-based ceramic nanostructure materials fabricated by simple sonochemical route for effective sunlight-driven photocatalytic degradation of organic pollution. Ceram. Int. 47, 8959–8972 (2021)

    Article  CAS  Google Scholar 

  2. J. Jeevanandam, A. Barhoum, Y.S. Chan, A. Dufresne, M.K. Danquah, Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9, 1050–1074 (2018)

    Article  CAS  Google Scholar 

  3. S. Zinatloo-Ajabshir, S.A. Heidari-Asil, M. Salavati-Niasari, Simple and eco-friendly synthesis of recoverable zinc cobalt oxide-based ceramic nanostructure as high-performance photocatalyst for enhanced photocatalytic removal of organic contamination under solar light. Sep. Purif. Technol. 267, 118667 (2021)

    Article  CAS  Google Scholar 

  4. A.B. Djurišić, A.M.C. Ng, X.Y. Chen, ZnO nanostructures for optoelectronics: Material properties and device applications. Prog. Quantum. Electron. 34, 191–259 (2010)

    Article  Google Scholar 

  5. F. Beshkar, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Preparation and characterization of the CuCr2O4 nanostructures via a new simple route. J. Mater. Sci. Mater. Electron. 26, 5043–5051 (2015)

    Article  CAS  Google Scholar 

  6. A. Wibowo, M.A. Marsudi, M.I. Amal, M.B. Ananda, R. Stephanie, H. Ardy, L.J. Diguna, ZnO nanostructured materials for emerging solar cell applications. RSC Adv. 10, 42838–42859 (2020)

    Article  CAS  Google Scholar 

  7. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Zirconia nanostructures: novel facile surfactant-free preparation and characterization. Int. J. Appl. Ceram. Technol. 13, 108–115 (2016)

    Article  CAS  Google Scholar 

  8. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)

    Article  Google Scholar 

  9. M. Skompska, K. Zarȩbska, Electrodeposition of ZnO nanorod arrays on transparent conducting substrates–a review. Electrochim. Acta 127, 467–488 (2014)

    Article  CAS  Google Scholar 

  10. J. Liu, F. Yi, Fabrication and properties of ZnO nanorods on silicon nanopillar surface for gas sensor application. J. Mater. Sci. Mater. Electron. 30, 11404–11411 (2019)

    Article  CAS  Google Scholar 

  11. H. Kim, J.Y. Moon, H.S. Lee, Effect of ZnCl2 concentration on the growth of ZnO by electrochemical deposition. Curr. Appl. Phys. 12, S35–S38 (2012)

    Article  Google Scholar 

  12. P.F. Azad, N. Naderi, M.J. Eshraghi, A. Massoudi, The effect of seed layer on optical and structural characteristics of ZnO nanorod arrays deposited by CBD method. J. Mater. Sci. Mater. Electron. 28, 15495–15499 (2017)

    Article  Google Scholar 

  13. A. López-Suárez, D. Acosta, C. Magaña, F. Hernández, Optical, structural and electrical properties of ZnO thin films doped with Mn. J. Mater. Sci. Mater. Electron. 31, 7389–7397 (2020)

    Article  Google Scholar 

  14. S. Wei, J. Lian, X. Chen, Q. Jiang, Effects of seed layer on the structure and property of zinc oxide thin films electrochemically deposited on ITO-coated glass. Appl. Surf. Sci. 254, 6605–6610 (2008)

    Article  CAS  Google Scholar 

  15. X.-D. Gao, F. Peng, X.-M. Li, W.-D. Yu, J.-J. Qiu, Growth of highly oriented ZnO films by the two-step electrodeposition technique. J. Mater. Sci. 42, 9638–9644 (2007)

    Article  CAS  Google Scholar 

  16. Y.-L. Xie, J. Yuan, P. Song, S.-Q. Hu, Growth of ZnO nanorods and nanosheets by electrodeposition and their applications in dye-sensitized solar cells. J. Mater. Sci. Mater. Electron. 26, 3868–3873 (2015)

    Article  CAS  Google Scholar 

  17. Z. Liu, J. Ya, E. Lei, Effects of substrates and seed layers on solution growing ZnO nanorods. J. Solid State Electrochem. 14, 957–963 (2010)

    Article  CAS  Google Scholar 

  18. Z. Liu, E. Lei, J. Ya, Y. Xin, Growth of ZnO nanorods by aqueous solution method with electrodeposited ZnO seed layers. Appl. Surf. Sci. 255, 6415–6420 (2009)

    Article  CAS  Google Scholar 

  19. O. Lupan, T. Pauporté, L. Chow, B. Viana, F. Pellé, L.K. Ono, B.R. Cuenya, H. Heinrich, Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium. Appl. Surf. Sci. 256, 1895–1907 (2010)

    Article  CAS  Google Scholar 

  20. A. Aithssi, L. Atourki, N. Labchir, M. Ouafi, K. Abouabassi, A. Elfanaoui, A. Ihlal, K. Bouabid, Electrodeposition of oriented ZnO nanorods by two-steps potentiostatic electrolysis: Effect of seed layer time. Solid State Sci. 104, 106207 (2020)

    Article  Google Scholar 

  21. N. Orhan, M.C. Baykul, Characterization of size-controlled ZnO nanorods produced by electrochemical deposition technique. Solid-State Electron. 78, 147–150 (2012)

    Article  CAS  Google Scholar 

  22. T. Long, S. Yin, K. Takabatake, P. Zhnag, T. Sato, Synthesis and characterization of ZnO nanorods and nanodisks from zinc chloride aqueous solution. Nanoscale Res. Lett. 4, 247–253 (2009)

    Article  CAS  Google Scholar 

  23. K. Lefatshe, P. Dube, D. Sebuso, M. Madhuku, C. Muiva, Optical dispersion analysis of template assisted 1D-ZnO nanorods for optoelectronic applications. Ceram. Int. 47, 7407–7415 (2021)

    Article  CAS  Google Scholar 

  24. M. Izaki, Preparation of transparent and conductive zinc oxide films by optimization of the two-step electrolysis technique. J. Electrochem. Soc. 146, 4517–4521 (1999)

    Article  CAS  Google Scholar 

  25. I. Horcas, R. Fernández, J.M. Gómez-Rodrίguez, J. Colchero, J. Gómez-Herrero, A.M. Baro, WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007)

    Article  CAS  Google Scholar 

  26. M.R. Khelladi, L. Mentar, A. Beniaiche, L. Makhloufi, A. Azizi, A study on electrodeposited zinc oxide nanostructures. J. Mater. Sci. Mater. Electron. 24, 153–159 (2013)

    Article  CAS  Google Scholar 

  27. A. Henni, A. Merrouche, L. Telli, A. Azizi, R. Nechache, Effect of potential on the early stages of nucleation and properties of the electrochemically synthesized ZnO nanorods. Mater. Sci. Semicond. Process. 31, 380–385 (2015)

    Article  CAS  Google Scholar 

  28. N. Kıcır, T. Tüken, O. Erken, C. Gumus, Y. Ufuktepe, Nanostructured ZnO films in forms of rod, plate and flower: Electrodeposition mechanisms and characterization. Appl. Surf. Sci. 377, 191–199 (2016)

    Article  Google Scholar 

  29. R.E. Marotti, D.N. Guerra, C. Bello, G. Machado, E.A. Dalchiele, Bandgap energy tuning of electrochemically grown ZnO thin films by thickness and electrodeposition potential. Sol. Energy Mater. Sol. Cells 82, 85–103 (2004)

    Article  CAS  Google Scholar 

  30. E.A. Dalchiele, P. Giorgi, R.E. Marotti, F. Martίn, J.R. Ramos-Barrado, R. Ayouci, D. Leinen, Electrodeposition of ZnO thin films on n-Si(1 0 0). Sol. Energy Mater. Sol. Cells 70, 245–254 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank İbrahim Çağdaş Denizli for taking AFM images of the samples. We would also like to thank Malik Kaya and Hakkı Erkan Kaygısız for their assistances in fabrication process of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umut Saraç.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saraç, U., Baykul, M.C. The influence of seed layer electroplating time on structural properties, optical energy bandgap, diameter, growth orientation and surface roughness of ZnO nanorods. J Mater Sci: Mater Electron 32, 26578–26587 (2021). https://doi.org/10.1007/s10854-021-07034-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07034-7

Navigation