Skip to main content
Log in

Immobilization of Mn(II) on Fe3O4@Schiff base as an efficient and recoverable magnetic nanocatalyst for the synthesis of hydroquinolines and Hantzsch reaction

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A facile process for the efficient synthesis of a new catalyst is reported by immobilization of Mn(II) on Fe3O4@Schiff base. This catalyst is applied for the synthesis of Hantzsch hydroquinoline derivatives. Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction and transmission electron microscopy analysis were used for the characterization of the as-synthesized catalyst. The products of Hantzsch reaction were characterized using 1H-NMR and FT-IR spectroscopies. Owing to its good magnetic property confirmed by vibrating sample magnetometer analysis, the as-prepared catalyst can be extracted from the reaction mixture easily and apply in the next catalytic cycle. In comparison to the same reactions, this method exhibits the advantages of short reaction times, higher yields, low catalyst loading, easy catalyst separation, catalyst reusability and low cost.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

Code availability

Not applicable.

References

  1. Klusa V (1995) Cerebrocrast. Neuroprotectant, cognition enhancer. Drugs Future 20:135–138

    Article  Google Scholar 

  2. Nasr-Esfahani M, Hoseini SJ, Montazerozohori M, Mehrabi R, Nasrabadi H (2014) Magnetic Fe3O4 nanoparticles: efficient and recoverable nanocatalyst for the synthesis of polyhydroquinolines and Hantzsch 1,4-dihydropyridines under solvent-free conditions. J Mol Catal A Chem 382:99–105

    Article  CAS  Google Scholar 

  3. Pastan I, Gottesman M (1987) Multiple-drug resistance in human cancer. N Engl J Med 316:1388–1393

    Article  CAS  Google Scholar 

  4. Love B, Snader KM (1965) The Hantzsch reaction. I. Oxidative dealkylation of certain dihydropyridines. J Org Chem 30:1914–1916

    Article  Google Scholar 

  5. Zhang XY, Li YZ, Fan XS, Qu GR, Hu XY, Wang JJ (2006) Multicomponent reaction in ionic liquid: a novel and green synthesis of 1,4-dihydropyridine derivatives. Chin Chem Lett 17:150–152

    CAS  Google Scholar 

  6. Mekheimer RA, Hameed AA, Sadek KU (2008) Solar thermochemical reactions: four-component synthesis of polyhydroquinoline derivatives induced by solar thermal energy. Green Chem 10:592–593

    Article  CAS  Google Scholar 

  7. Das B, Ravikanth B, Ramu R, Rao VB (2006) An efficient one-pot synthesis of polyhydroquinolines at room temperature using HY-zeolite. Chem Pharm Bull 54:1044–1045

    Article  CAS  Google Scholar 

  8. Reddy CS, Raghu M (2008) Cerium(IV) ammonium nitrate catalysed facile and efficient synthesis of polyhydroquinoline derivatives through Hantzsch multicomponent condensation. Chin Chem Lett 19:775–779

    Article  CAS  Google Scholar 

  9. Sapkal SB, Shelke KF, Shingate BB, Shingare M (2009) Nickel nanoparticle-catalyzed facile and efficient one-pot synthesis of polyhydroquinoline derivatives via Hantzsch condensation under solvent-free conditions. Tetrahedron Lett 50:1754–1756

    Article  CAS  Google Scholar 

  10. Li M, Zuo Z, Wen L, Wang S (2008) Microwave-assisted combinatorial synthesis of hexasubstituted 1,4-dihydropyridines scaffolds using one-pot two-step multicomponent reaction followed by a S-alkylation. J Comb Chem 10:436–441

    Article  CAS  Google Scholar 

  11. Tu SJ, Zhou JF, Deng X, Cai PJ, Wang H, Feng JC (2001) One step synthesis of 4-arylpolyhydroquinoline derivatives using microwave irradiation. Chin J Org Chem 21:313–316

    CAS  Google Scholar 

  12. Zhu QL, Xu Q (2016) Immobilization of ultrafine metal nanoparticles to high-surface-area materials and their catalytic applications. Chem 1:220–245

    Article  CAS  Google Scholar 

  13. Hoseini SJ, Nasrabadi H, Azizi M, Salimi Beni A, Khalifeh R (2013) Fe3O4 nanoparticles as an efficient and magnetically recoverable catalyst for Friedel-Crafts acylation reaction in solvent-free conditions. Synth Commun 43:1683–1691

    Article  CAS  Google Scholar 

  14. Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124:8204–8205

    Article  CAS  Google Scholar 

  15. Hoseini SJ, Heidari V, Nasrabadi H (2015) Magnetic Pd/Fe3O4/reduced-graphene oxide nanohybrid as an efficient and recoverable catalyst for Suzuki–Miyaura coupling reaction in water. J Mol Catal A Chem 396:90–95

    Article  CAS  Google Scholar 

  16. Hoseini SJ, Aramesh N, Bahrami M (2017) Effect of addition of iron on morphology and catalytic activity of PdCu nanoalloy thin film as catalyst in Sonogashira coupling reaction. Appl Organomet Chem 31:e3675–e3683

    Article  Google Scholar 

  17. Sreedhar B, Kumar AS, Reddy PS (2010) Magnetically separable Fe3O4 nanoparticles: an efficient catalyst for the synthesis of propargylamines. Tetrahedron Lett 51:1891–1895

    Article  CAS  Google Scholar 

  18. Roopan SM, Nawaz-Khan FR, Mandal BK (2010) Fe nano particles mediated C–N bond-forming reaction: regioselective synthesis of 3-[(2-chloroquinolin-3-yl)methyl]pyrimidin-4(3H)ones. Tetrahedron Lett 51:2309–2311

    Article  CAS  Google Scholar 

  19. Lü HY, Yang SH, Deng J, Zhang ZH (2010) Magnetic Fe3O4 nanoparticles as new, efficient, and reusable catalysts for the synthesis of quinoxalines in water. Aust J Chem 63:1290–1296

    Article  Google Scholar 

  20. Söderlind P, Moore KT (2008) When magnetism can stabilize the crystal structure of metals. Scr Mater 59:1259–1262

    Article  Google Scholar 

  21. Nasrabadi H, Amirghofran Z, Esmaeilbeig A, Bahrami M, Hoseini SJ (2018) Covalent bonding of magnetic Fe3O4 nanoparticles to aminopropyl-functionalized magnesium phyllosilicate clay: synthesis and cytotoxic potential investigation. Appl Organomet Chem 32:e4036–e4044

    Article  Google Scholar 

  22. Tian R, Seitz O, Li M, Hu W, Chabal YJ, Gao J (2010) Infrared characterization of interfacial Si–O bond formation on silanized flat SiO2/Si surfaces. Langmuir 26:4563–4566

    Article  CAS  Google Scholar 

  23. Jaleh B, Khalilipour A, Habibi S, Niyaifar M, Nasrollahzadeh M (2017) Synthesis, characterization, magnetic and catalytic properties of graphene oxide/Fe3O4. J Mater Sci Mater Electron 28:4974–4983

    Article  CAS  Google Scholar 

  24. Munasir N, Setianingsih N, Yanasin S, Supardi ZAI, Taufiq A, Sunaryono S (2019) Phase and magnetic properties of Fe3O4/SiO2 natural materials-based using polyethylene glycol media. IOP Conf Ser Mater Sci Eng 515:012017

    Article  CAS  Google Scholar 

  25. Baran T, Sargın I, Kaya M, Mulercikas P, Kazlauskaite S, Mentes A (2018) Production of magnetically recoverable, thermally stable, bio-based catalyst: remarkable turnover frequency and reusability in Suzuki coupling reaction. Chem Eng J 331:102–113

    Article  CAS  Google Scholar 

  26. Baran T, Baran NY, Mentes A (2019) Highly active and recyclable heterogeneous palladium catalyst derived from guar gum for fabrication of biaryl compounds. Int J Biol Macromol 132:1147–1154

    Article  CAS  Google Scholar 

  27. Mirzaee H, Izadyar A, Davoodnia A, Eshghi H (2014) One-pot synthesis of polyhydroquinoline derivatives via Hantzsch condensation reaction using nanosized magnesium oxide as heterogeneous catalyst. J Appl Chem Res 8:57–63

    Google Scholar 

  28. Mayurachayakul P, Pluempanupat W, Srisuwannaket C, Chantarasriwong O (2017) Four-component synthesis of polyhydroquinolines under catalyst- and solvent-free conventional heating conditions: mechanistic studies. RSC Adv 7:56764–56770

    Article  CAS  Google Scholar 

  29. Nagarapu L, Apuri S, Gaddam S, Bantu R, Mahankhali VC, Kantevari S (2008) A facile synthesis of polyhydroquinoline derivatives via the Hantzsch reaction under solvent free-conditions using potassium dodecatungsto cobaltate trihydrate (K5CoW12O40.3H2O). Lett Org Chem 5:60–64

    Article  CAS  Google Scholar 

  30. Khazaei A, Zolfigol MA, Moosavi-Zare AR, Afsar J, Zare A, Khakyzadeh V, Beyzavi MH (2013) Synthesis of hexahydroquinolines using the new ionic liquid sulfonic acid functionalized pyridinium chloride as a catalyst. Chin J Catal 34:1936–1944

    Article  CAS  Google Scholar 

  31. Nagarapu L, Kumari MD, Kumari NV, Kantevari S (2007) MCM-41 catalyzed rapid and efficient one-pot synthesis of polyhydroquinolines via the Hantzsch reaction under solvent-free conditions. Catal Commun 8:1871–1875

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Ahvaz University Research Council (Islamic Azad University) for their support.

Funding

There is no funding to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashid Badri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lashkari, F., Badri, R. & Tahanpesar, E. Immobilization of Mn(II) on Fe3O4@Schiff base as an efficient and recoverable magnetic nanocatalyst for the synthesis of hydroquinolines and Hantzsch reaction. Reac Kinet Mech Cat 134, 361–383 (2021). https://doi.org/10.1007/s11144-021-02072-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02072-y

Keywords

Navigation