Skip to main content
Log in

The effect of NAOH and hexamine on the synthesis of titanium oxide nanostructured particles, their photocatalytic degradation effect on malachite green, rodamine B and methylene blue

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this study, TiO2 nanostructured particles synthesized by hydrothermal method were characterized by X-ray diffraction and scanning electron microscopy. X-ray diffraction peaks of the samples were examined and rutile and anatase phases were observed. Morphological properties of the samples were examined in scanning electron microscopy images. These nanostructured particles were used in the application of degradation of waste water from dyestuffs. Methylene blue, melachite green and rhodamine b were used as dyestuffs, All samples were found to have high photocatalytic degradation. Particularly, it was observed that titanium dioxide nanostructured particles obtained by adding hexamethylene tetramine had a very high degradation of 94% and above on all dyestuffs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Carneiro PA, Umbuzeiro GA, Oliveira DP et al (2010) Assessment of water contamination caused by a mutagenic textile effluent/dyehouse effluent bearing disperse dyes. J Hazard Mater 174:694–699

    Article  CAS  Google Scholar 

  2. Nwankwo U, Bucher R, Ekwealor ABC et al (2019) Synthesis and characterizations of rutile-TiO2 nanoparticles derived from chitin for potential photocatalytic applications. Vacuum 161:49–54

    Article  CAS  Google Scholar 

  3. Hiremath V, Deonikar VG, Kim H, Seo JG (2020) Hierarchically assembled porous TiO2 nanoparticles with enhanced photocatalytic activity towards Rhodamine-B degradation. Colloids Surfaces A Physicochem Eng Asp 586:124199

    Article  CAS  Google Scholar 

  4. Maragatha J, Rajendran S, Endo T, Karuppuchamy S (2017) Microwave synthesis of metal doped TiO 2 for photocatalytic applications. J Mater Sci Mater Electron 28:5281–5287

    Article  CAS  Google Scholar 

  5. Bae E, Choi W (2003) Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light. Environ Sci Technol 37:147–152

    Article  CAS  Google Scholar 

  6. Choi W, Lee J, Kim S et al (2003) Nano Pt particles on TiO2 and their effects on photocatalytic reactivity. J Ind Eng Chem 9:96–101

    CAS  Google Scholar 

  7. Wu G, Wang J, Thomas DF, Chen A (2008) Synthesis of F-doped flower-like TiO2 nanostructures with high photoelectrochemical activity. Langmuir 24:3503–3509

    Article  CAS  Google Scholar 

  8. Lee DH, Swain B, Shin D et al (2019) One-pot wet chemical synthesis of fluorine-containing TiO2 nanoparticles with enhanced photocatalytic activity. Mater Res Bull 109:227–232

    Article  CAS  Google Scholar 

  9. Pawar RC, Lee CS (2014) Single-step sensitization of reduced graphene oxide sheets and CdS nanoparticles on ZnO nanorods as visible-light photocatalysts. Appl Catal B Environ 144:57–65

    Article  CAS  Google Scholar 

  10. Dagui C, Feng H, Guoqiang R et al (2010) ZnS nano-architectures: photocatalysis, deactivation and regeneration. Nanoscale 2:2062–2064

    Article  Google Scholar 

  11. Wu W, Liao L, Zhang S et al (2013) Non-centrosymmetric Au–SnO2 hybrid nanostructures with strong localization of plasmonic for enhanced photocatalysis application. Nanoscale 5:5628–5636

    Article  CAS  Google Scholar 

  12. Kong L, Chen W, Ma D et al (2011) Size control of Au@Cu2O octahedra for excellent photocatalytic performance. J Mater Chem 22:719–724

    Article  Google Scholar 

  13. Chen X, Zhou Y, Liu Q et al (2012) Ultrathin, single-crystal WO3 nanosheets by two-dimensional oriented attachment toward enhanced photocatalystic reduction of CO2 into hydrocarbon fuels under visible light. ACS Appl Mater Interf 4:3372–3377

    Article  CAS  Google Scholar 

  14. An C, Wang J, Jiang W et al (2012) Strongly visible-light responsive plasmonic shaped AgX: Ag (X = Cl, Br) nanoparticles for reduction of CO2 to methanol. Nanoscale 4:5646–5650

    Article  CAS  Google Scholar 

  15. Wei Y, Han S, Walker DA et al (2012) Enhanced photocatalytic activity of hybrid Fe2O3-Pd nanoparticulate catalysts. Chem Sci 3:1090–1094

    Article  CAS  Google Scholar 

  16. Li Q, Guo B, Yu J et al (2011) Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J Am Chem Soc 133:10878–10884

    Article  CAS  Google Scholar 

  17. Kerli S, Alver Ü, Eskalen H et al (2019) Structural and morphological properties of boron doped V 2 O 5 thin films: highly efficient photocatalytic degradation of methyl blue. Russ J Appl Chem 92:304–309

    Article  CAS  Google Scholar 

  18. Kerli S, Soǧuksu AK (2019) Production of iron oxide and nickel oxide nanostructural particles, investigation of the supercapacitor and photocatalytic properties. Zeitschrift fur Krist - Cryst Mater 234:725–731

    Article  CAS  Google Scholar 

  19. Kerli S, Eskalen H (2020) Synthesis of titanium oxide thin films by spray pyrolysis method and its photocatalytic activity for degradation of dyes and ciprofloxacin. Phys Chem Solid State 21:426–432

    Article  CAS  Google Scholar 

  20. Robel I, Kuno M, Kamat PV (2007) Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. J Am Chem Soc 129:4136–4137

    Article  CAS  Google Scholar 

  21. Sugapriya S, Sriram R, Lakshmi S (2013) Effect of annealing on TiO2 nanoparticles. Optik (Stuttg) 124:4971–4975

    Article  CAS  Google Scholar 

  22. Ennaoui A, Sankapal BR, Skryshevsky V, Lux-Steiner MC (2006) TiO2 and TiO2–SiO2 thin films and powders by one-step soft-solution method: Synthesis and characterizations. Sol Energy Mater Sol Cells 90:1533–1541

    Article  CAS  Google Scholar 

  23. de Oliveira CV, Petitbois J, Faÿ F et al (2020) Marine antibiofouling properties of TiO2 and Ti-Cu-O films deposited by aerosol-assisted chemical vapor deposition. Coatings 10:779

    Article  Google Scholar 

  24. Payormhorm J, Idem R (2020) Synthesis of C-doped TiO2 by sol-microwave method for photocatalytic conversion of glycerol to value-added chemicals under visible light. Appl Catal A Gen 590:117362

    Article  CAS  Google Scholar 

  25. Canbay CA, Özkbey F (2020) Fabrication of TiO2 based composite materials by hydrothermal method. Turkish J Eng 4:30–35

    Google Scholar 

  26. Wang Z, Ali Haidry A, Xie L et al (2020) Acetone sensing applications of Ag modified TiO2 porous nanoparticles synthesized via facile hydrothermal method. Appl Surf Sci 533:147383

    Article  CAS  Google Scholar 

  27. Elmorsi TM, Riyad YM, Mohamed ZH, Abd El Bary HMH (2010) Decolorization of Mordant red 73 azo dye in water using H2O2/UV and photo-Fenton treatment. J Hazard Mater 174(1–3):352–358. https://doi.org/10.1016/j.jhazmat.2009.09.057

    Article  CAS  PubMed  Google Scholar 

  28. Zepp RG, Hoigne J, Bader H (1987) Nitrate-induced photooxidation of trace organic chemicals in water. Environ Sci Technol 21(5):443–450. https://doi.org/10.1021/es00159a004

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Q, Gao L, Guo J (2000) Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis. Appl Catal B Environ 26:207–215

    Article  CAS  Google Scholar 

  30. Su R, Bechstein R, Sø L et al (2011) How the anatase-to-rutile ratio influences the photoreactivity of TiO 2. J Phys Chem C 115:24287–24292

    Article  CAS  Google Scholar 

  31. Najafidoust A, Allahyari S, Rahemi N, Tasbihi M (2020) Uniform coating of TiO2 nanoparticles using biotemplates for photocatalytic wastewater treatment. Ceram Int 46:4707–4719

    Article  CAS  Google Scholar 

  32. Spurr RA, Myers H (2002) Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer. Anal Chem 29:760–762

    Article  Google Scholar 

  33. Raval NP, Shah PU (2016) Shah NK (2016) Malachite green “a cationic dye” and its removal from aqueous solution by adsorption. Appl Water Sci 77(7):3407–3445

    Article  Google Scholar 

  34. Mokhtar A, Abdelkrim S, Djelad A et al (2020) Adsorption behavior of cationic and anionic dyes on magadiite-chitosan composite beads. Carbohydr Polym 229:115399

    Article  CAS  Google Scholar 

  35. Lente G (2018) Facts and alternative facts in chemical kinetics: remarks about the kinetic use of activities, termolecular processes, and linearization techniques. Curr Opin Chem Eng 21:76–83

    Article  Google Scholar 

  36. Lente G (2015) Deterministic kinetics in chemistry and systems biology: the dynamics of complex reaction networks. Springer: London

  37. Roguai S, Djelloul A (2021) Photocatalytic degradation of methylene blue using sprayed Mg diluted ZnO heterostructure thin films photocatalysts. React Kinet Mech Catal 1322(132):1225–1244

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Süleyman Kerli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 364 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerli, S., Soğuksu, A.K. & Kavgacı, M. The effect of NAOH and hexamine on the synthesis of titanium oxide nanostructured particles, their photocatalytic degradation effect on malachite green, rodamine B and methylene blue. Reac Kinet Mech Cat 134, 539–551 (2021). https://doi.org/10.1007/s11144-021-02074-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02074-w

Keywords

Navigation