Skip to main content

Advertisement

Log in

RNA interference and crop protection against biotic stresses

  • Review Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

RNA interference (RNAi) is a universal phenomenon of RNA silencing or gene silencing with broader implications in important physiological and developmental processes of most eukaryotes, including plants. Small RNA (sRNA) are the critical drivers of the RNAi machinery that ensures down-regulation of the target genes in a homology-dependent manner and includes small-interfering RNAs (siRNAs) and micro RNAs (miRNAs). Plant researchers across the globe have exploited the powerful technique of RNAi to execute targeted suppression of desired genes in important crop plants, with an intent to improve crop protection against pathogens and pests for sustainable crop production. Biotic stresses cause severe losses to the agricultural productivity leading to food insecurity for future generations. RNAi has majorly contributed towards the development of designer crops that are resilient towards the various biotic stresses such as viruses, bacteria, fungi, insect pests, and nematodes. This review summarizes the recent progress made in the RNAi-mediated strategies against these biotic stresses, along with new insights on the future directions in research involving RNAi for crop protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdellatef E, Will T, Koch A, Imani J, Vilcinskas A, Kogel K-H (2015) Silencing the expression of the salivary sheath protein causes transgenerational feeding suppression in the aphid Sitobion avenae. Plant Biotechnol J 13:849–857

    Article  CAS  PubMed  Google Scholar 

  • Agrawal N, Sachdev B, Rodrigues J, Bhatnagar RK (2013) Development associated profiling of chitinase and microRNA of Helicoverpa armigera identified chitinase repressive microRNA. Sci Rep 3:2292

    Article  PubMed  PubMed Central  Google Scholar 

  • Agrawal A, Rajamani V, Reddy VS, Mukherjee SK, Bhatnagar RK (2015) Transgenic plants over-expressing insect-specific microRNA acquire insecticidal activity against Helicoverpa armigera: an alternative to Bt-toxin technology. Transgenic Res 24:791–801

    Article  CAS  PubMed  Google Scholar 

  • Akimoto K, Katakami H, Kim HJ, Ogawa E, Sano CM, Wada Y, Sano H (2007) Epigenetic inheritance in rice plants. Ann Bot 100:205–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arif M, Azhar U, Arshad M, Zafar Y, Mansoor S, Asad S (2012) Engineering broad-spectrum resistance against RNA viruses in potato. Transgenic Res 21:303–311

    Article  CAS  PubMed  Google Scholar 

  • Ashapkin VV, Kutueva LI, Aleksandrushkina NI, Vanyushin BF (2020) Epigenetic mechanisms of plant adaptation to biotic and abiotic stresses. Int J Mol Sci 21:7457

    Article  CAS  PubMed Central  Google Scholar 

  • Bai Y, Guo Z, Wang X, Bai D, Zhang W (2009) Generation of double-virus-resistant marker-free transgenic potato plants. Prog Nat Sci 19:543–548

    Article  CAS  Google Scholar 

  • Bally J, Fishilevich E, Doran RL, de Campos SB, German MA, Narva KE, Waterhouse PM (2020) Plin-amiR, a pre-microRNA-based technology for controlling herbivorous insect pests. Plant Biotechnol J 18:1925–1932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banakar P, Hada A, Papolu PK, Rao U (2020) Simultaneous RNAi knockdown of three FMRFamide-like peptide genes, Mi-flp1, Mi-flp12, and Mi-flp18 provides resistance to root-knot nematode Meloidogyne Incognita. Front Microbiol 11:2690

    Article  Google Scholar 

  • Baum JA, Bogaert T, Clinton W et al (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326

    Article  CAS  PubMed  Google Scholar 

  • Béclin C, Boutet S, Waterhouse P, Vaucheret H (2002) A branched pathway for transgene-induced RNA silencing in plants. Curr Biol 12:684–688

    Article  PubMed  Google Scholar 

  • Bharti P, Jyoti P, Kapoor P, Sharma V, Shanmugam V, Yadav SK (2017) Host-induced silencing of pathogenicity genes enhances resistance to Fusarium oxysporum wilt in tomato. Mol Biotechnol 59:343–352

    Article  CAS  PubMed  Google Scholar 

  • Bhatia V, Bhattacharya R, Uniyal PL, Singh R, Niranjan RS (2012) Host generated siRNAs attenuate expression of serine protease gene in Myzus persicae. PLoS ONE 7:e46343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonfim K, Faria JC, Nogueira EOPL, Mendes EA, Aragão FJL (2007) RNAi-mediated resistance to bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Mol Plant Microbe Interact 20:717–726

    Article  CAS  PubMed  Google Scholar 

  • Borges F, Martienssen RA (2015) The expanding world of small RNAs in plants. Nat Rev Mol Cell Biol 16:727–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Q, Qiao L, Wang M, He B, Lin F-M, Palmquist J, Huang S-D, Jin H (2018) Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 360:1126–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campo S, Peris-Peris C, Siré C, Moreno AB, Donaire L, Zytnicki M, Notredame C, Llave C, Segundo BS (2013) Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the N-ramp6 (Natural resistance-associated macrophage protein 6) gene involved in pathogen resistance. New Phytol 199:212–227

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary S, Dutta TK, Tyagi N, Shivakumara TN, Papolu PK, Chobhe KA, Rao U (2019) Host-induced silencing of Mi-msp-1 confers resistance to root-knot nematode Meloidogyne incognita in eggplant. Transgenic Res 28:327–340

    Article  CAS  PubMed  Google Scholar 

  • Chauhan S, Yogindran S, Rajam MV (2017) Role of miRNAs in biotic stress reactions in plants. Ind J Plant Physiol 22:514–529

    Article  CAS  Google Scholar 

  • Chung BN, Yoon JY, Palukaitis P (2013) Engineered resistance in potato against potato leafroll virus, potato virus A and potato virus Y. Virus Genes 47:86–92

    Article  CAS  PubMed  Google Scholar 

  • De Souza Júnior JDA, Coelho RR, Lourenço IT et al (2013) Knocking-down Meloidogyne incognita proteases by plant-delivered dsRNA has negative pleiotropic effect on nematode vigor. PLoS ONE 8:e85364

    Article  CAS  Google Scholar 

  • Deng GM, Yang QS, He WD et al (2015) Proteomic analysis of conidia germination in Fusarium oxysporum f. sp. cubense tropical race 4 reveals new targets in ergosterol biosynthesis pathway for controlling Fusarium wilt of banana. Appl Microbiol Biotechnol 99:7189–7207

    Article  CAS  PubMed  Google Scholar 

  • Devers EA (2019) An artificial-microRNA system based on an endogenous microRNA of Medicago truncatula to unravel the function of root endosymbiosis related genes. In: Bruijn FJD (ed) The model legume Medicago truncatula, Wiley-Blackwell, pp 1033–1042

  • Devers EA, Teply J, Reinert A, Gaude N, Krajinski F (2013) An endogenous artificial microRNA system for unraveling the function of root endosymbioses related genes in Medicago truncatula. BMC Plant Biol 13:82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinh PTP, Zhang L, Brown CR, Elling AA (2014) Plant-mediated RNA interference of effector gene Mc16D10L confers resistance against Meloidogyne chitwoodi in diverse genetic backgrounds of potato and reduces pathogenicity of nematode offspring. Nematology 16:669–682

    Article  CAS  Google Scholar 

  • Dou T, Shao X, Hu C et al (2020) Host-induced gene silencing of Foc TR4 ERG6/11 genes exhibits superior resistance to Fusarium wilt of banana. Plant Biotechnol J 18:11–13

    Article  CAS  PubMed  Google Scholar 

  • Duan C, Wang C, Guo H (2008) Delayed resistance to Cucumber mosaic virus mediated by 3’UTR-derived hairpin RNA. Chin Sci Bull 53:3301–3310

    CAS  Google Scholar 

  • Dunker F, Oberkofler L, Lederer B et al (2020) An Arabidopsis downy mildew non-RxLR effector suppresses induced plant cell death to promote biotroph infection. J Exp Bot 72(2):718–732

    Article  PubMed Central  CAS  Google Scholar 

  • Dutta TK, Papolu PK, Banakar P et al (2015a) Tomato transgenic plants expressing hairpin construct of a nematode protease gene conferred enhanced resistance to root-knot nematodes. Front Microbiol 6:260

    Article  PubMed  PubMed Central  Google Scholar 

  • Dutta TK, Papolu PK, Singh D, Sreevathsa R, Rao U (2015b) Expression interference of a number of Heterodera avenae conserved genes perturbs nematode parasitic success in Triticum aestivum. Plant Sci 301:110670

    Article  CAS  Google Scholar 

  • Dutta T, Neelapu NRR, Wani SH et al (2020b) Salt stress tolerance and small RNA. In: Guleria P, Kumar V (eds) Plant small RNA biogenesis, regulation and application (Academic press), pp 191–207

  • Erdmann RM, Picard CL (2020) RNA-directed DNA methylation. PLoS Genet 16:e1009034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escobar MA, Civerolo EL, Summerfelt KR, Dandekar AM (2001) RNAi-mediated oncogene silencing confers resistance to crown gall tumorigenesis. Proc Natl Acad Sci USA 98:13437–13442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escobar MA, Leslie CA, McGranahan GH, Dandekar AM (2002) Silencing crown gall disease in walnut (Juglans regia L.). Plant Sci 163:591–597

    Article  CAS  Google Scholar 

  • Fahim M, Millar AA, Wood CC, Larkin PJ (2012) Resistance to wheat streak mosaic virus generated by expression of an artificial polycistronic microRNA in wheat. Plant Biotechnol J 10:150–163

    Article  CAS  PubMed  Google Scholar 

  • Fairbairn DJ, Cavallaro AS, Bernard M, Mahalinga-Iyer J, Graham MW, Botella JR (2007) Host-delivered RNAi: an effective strategy to silence genes in plant parasitic nematodes. Planta 226:1525–1533

    Article  CAS  PubMed  Google Scholar 

  • Faisal M, Abdel-Salam EM, Alatar AA, Saquib Q, Alwathnani HA, Canto T (2019) Genetic transformation and siRNA-mediated gene silencing for aphid resistance in tomato. Agronomy 9:893

    Article  CAS  Google Scholar 

  • Fan W, Wei Z, Zhang M et al (2015) Resistance to Ditylenchus destructor infection in sweet potato by the expression of small interfering RNAs targeting unc-15, a movement-related gene. Phytopathology 105:1458–1465

    Article  CAS  PubMed  Google Scholar 

  • FAO (2013) http://www.fao.org/3/i3107e/i3107e00.htm

  • Fernandes JS, Angelo PCS, Cruz JC, Santos JMM, Sousa NR, Silva GF (2016) Post-transcriptional silencing of the SGE1 gene induced by a dsRNA hairpin in Fusarium oxysporum f. sp cubense, the causal agent of Panama disease. Genet Mol Res 15:1–14

    Article  Google Scholar 

  • Filipowicz W, Paszkowski J (2013) Gene Silencing. In: Maloy S, Hughes K (eds) Brenner's encyclopedia of genetics, (2nd ed) (Academic Press), pp 221–222

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  • Fletcher SJ, Reeves PT, Hoang BT, Mitter N (2020) A perspective on RNAi-based biopesticides. Front Plant Sci 11:51

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghag SB, Shekhawat UK, Ganapathi TR (2014) Host-induced post-transcriptional hairpin RNA-mediated gene silencing of vital fungal genes confers efficient resistance against Fusarium wilt in banana. Plant Biotechnol J 12:541–553

    Article  CAS  PubMed  Google Scholar 

  • Guo S, Kemphues K (1995) par-1, a gene required for establishing polarity in C. elegans embryo, encodes a putative Ser/Thr kinase that is assymmetrically distributed. Cell 81:611–620

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Song X, Wang G, Yang K, Wang Y, Niu L, Chen X, Fang R (2014) Plant-generated artificial small RNAs mediated aphid resistance. PLoS ONE 9:e97410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo XY, Li Y, Fan J et al (2019) Host-induced gene silencing of MoAP1 confers broad-spectrum resistance to Magnaporthe oryzae. Front Plant Sci 10:433

    Article  PubMed  PubMed Central  Google Scholar 

  • He XJ, Hsu YF, Zhu S, Wierzbicki AT, Pontes O, Pikaard CS, Liu HL, Wang CS, Jin H, Zhu JK (2009) An effector of RNA directed DNA methylation in Arabidopsis is an ARGONAUTE 4- and RNA-binding protein. Cell 137:498–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He B, Chu Y, Yin M, Müllen K, An C, Shen J (2013) Fluorescent nanoparticle delivered dsRNA toward genetic control of insect pests. Adv Mater 25:4580–4584

    Article  CAS  PubMed  Google Scholar 

  • He F, Zhang R, Zhao J, Qi T, Kang Z, Guo J (2019a) Host-induced silencing of Fusarium graminearum genes enhances the resistance of Brachypodium distachyon to Fusarium head blight. Front Plant Sci 10:1362

    Article  PubMed  PubMed Central  Google Scholar 

  • He K, Xiao H, Sun Y, Ding S, Situ G, Li F (2019b) Transgenic micro RNA-14 rice shows high resistance to rice stem borer. Plant Biotechnol J17:461–471

    Article  CAS  Google Scholar 

  • Höfle L, Biedenkopf D, Werner BT, Shrestha A, Jelonek L, Koch A (2020) Study on the efficiency of dsRNAs with increasing length in RNA-based silencing of the Fusarium CYP51 genes. RNA Biol 17:463–473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Holoch D, Moazed D (2015) RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet 16:71–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu D, Chen ZY, Zhang C, Ganiger M (2020) Reduction of Phakopsora pachyrhizi infection on soybean through host-and spray-induced gene silencing. Mol Plant Pathol 21:794–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang G, Allen R, Davis EL, Baum TJ, Hussey RS (2006) Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc Natl Acad Sci USA 103:14302–14306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain T, Aksoy E, Çalışkan ME, Bakhsh A (2019) Transgenic potato lines expressing hairpin RNAi construct of molting-associated EcR gene exhibit enhanced resistance against Colorado potato beetle (Leptinotarsa decemlineata, Say). Transgenic Res 28:151–164

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim HM, Alkharouf NW, Meyer SL et al (2011) Post-transcriptional gene silencing of root-knot nematode in transformed soybean roots. Exp Parasitol 127:90–99

    Article  CAS  PubMed  Google Scholar 

  • Israni B, Rajam MV (2017) Silencing of ecdysone receptor, insect intestinal mucin and sericotropin genes by bacterially produced double-stranded RNA affects larval growth and development in Plutella xylostella and Helicoverpa armigera. Insect Mol Biol 26:164–180

    Article  CAS  PubMed  Google Scholar 

  • Jagadeeswaran G, Saini A, Sunkar R (2009) Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta 229:1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Jain PK, Bhattacharya R, Kohli D, Aminedi R, Agrawal PK (2018) RNAi for resistance against biotic stresses in crop plants. In: Gosal S, Wani S (eds) Biotechnologies of crop improvement, vol 2, Springer International Publishing AG, pp 67–112

  • Jelly NS, Schellenbaum P, Walter B, Maillot P (2012) Transient expression of artificial microRNAs targeting Grapevine fanleaf virus and evidence for RNA silencing in grapevine somatic embryos. Transgenic Res 21:1319–1327

    Article  CAS  PubMed  Google Scholar 

  • Jia R, Zhao H, Huang J, Kong H, Zhang Y, Guo J, Huang Q, Guo Y, Wei Q, Zuo J, Zhu YJ (2017) Use of RNAi technology to develop a PRSV-resistant transgenic papaya. Sci Rep 7:1–9

    CAS  Google Scholar 

  • Jiang S, Wu H, Liu H, Zheng J, Lin Y, Chen H (2017) The overexpression of insect endogenous small RNAs in transgenic rice inhibits growth and delays pupation of striped stem borer (Chilo suppressalis). Pest Manag Sci 73:1453–1461

    Article  CAS  PubMed  Google Scholar 

  • Jiang CJ, Shimono M, Maeda S, Inoue H, Mori M, Hasegawa M, Sugano S, Takatsuji H (2009) Suppression of the rice fatty-acid desaturase gene OsSSI2 enhances resistance to blast and leaf blight diseases in rice. Mol Plant Microbe Interact 22:820–829

    Article  CAS  PubMed  Google Scholar 

  • Jin S, Singh ND, Li L, Zhang X, Daniell H (2015) Engineered chloroplast dsRNA silences cytochrome p450 monooxygenase, V-ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa armigera larval development and pupation. Plant Biotechnol J 13:435–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi I, Kumar A, Singh AK, Kohli D, Raman KV, Sirohi A, Chaudhury A, Jain PK (2019) Development of nematode resistance in Arabidopsis by HD-RNAi-mediated silencing of the effector gene Mi-msp2. Sci Rep 9:1–11

    Article  Google Scholar 

  • Kang L, Wang YS, Uppalapati SR et al (2008) Overexpression of a fatty acid amide hydrolase compromises innate immunity in Arabidopsis. Plant J 56:336–349

    Article  CAS  PubMed  Google Scholar 

  • Kaur R, Bhunia RK, Rajam MV (2020) MicroRNAs as potential targets for improving rice yield via plant architecture modulation: Recent studies and future perspectives. J Biosci 45:116

    Article  CAS  PubMed  Google Scholar 

  • Kennerdell JR, Carthew RW (1998) Use of dsRNA-mediated genetic interference to demonstrate that frizzeled and frizzeled 2 act in the wingless pathway. Cell 95:1017–1026

    Article  CAS  PubMed  Google Scholar 

  • Kertbundit S, Pongtanom N, Ruanjan P, Chantasingh D, Tanwanchai A, Panyim S, Juříček M (2007) Resistance of transgenic papaya plants to Papaya ringspot virus. Biol Plant 51:333–339

    Article  CAS  Google Scholar 

  • Khatoon S, Kumar A, Sarin NB, Khan JA (2016) RNAi-mediated resistance against cotton leaf curl disease in elite Indian cotton (Gossypium hirsutum) cultivar Narasimha. Virus Genes 52:530–537

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Kim MJ, Pak JH, Jung HW, Choi HK, Lee YH, Baek IY, Ko JM, Jeong SC, Pack IS, Ryu KH (2013) Characterization of SMV resistance of soybean produced by genetic transformation of SMV-CP gene in RNAi. Plant Biotechnol Rep 7:425–433

    Article  Google Scholar 

  • Kis A, Tholt G, Ivanics M, Várallyay É, Jenes B, Havelda Z (2016) Polycistronic artificial miRNA-mediated resistance to Wheat dwarf virus in barley is highly efficient at low temperature. Mol Plant Pathol 17:427–437

    Article  CAS  PubMed  Google Scholar 

  • Klink VP, Kim KH, Martins V et al (2009) A correlation between host-mediated expression of parasite genes as tandem inverted repeats and abrogation of development of female Heterodera glycines cyst formation during infection of Glycine max. Planta 230:53–71

    Article  CAS  PubMed  Google Scholar 

  • Koch A, Kumar N, Weber L, Keller H, Imani J, Kogel K-H (2013) Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase–encoding genes confers strong resistance to Fusarium species. Proc Natl Acad Sci USA 110:19324–19329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch A, Schlemmer T, Hoefle L et al (2020) Host-induced gene silencing involves transfer of dsRNA-derived siRNA via extracellular vesicles. bioRxiv. https://doi.org/10.1101/2020.02.12.945154

  • Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucl Acids Res 47:155–162

    Article  CAS  Google Scholar 

  • Kumar M, Gupta GP, Rajam MV (2009) Silencing of acetylcholinesterase gene of Helicoverpa armigera by siRNA affects larval growth and its life cycle. J Insect Physiol 55:273–278

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Tanti B, Patil BL, Mukherjee SK, Sahoo L (2017b) RNAi-derived transgenic resistance to Mungbean yellow mosaic India virus in cowpea. PLoS ONE 12:e0186786

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar SR, Nayeem S, Ramalingam S (2017) Small RNAs: master regulators of epigenetic silencing in plants. In: Rajewsky N, Jurga S, Barciszewski J (eds) Plant epigenetics. RNA Technologies. Springer, Cham, pp 89–106

  • Kumari A, Hada A, Subramanyam K, Theboral J, Misra S, Ganapathi A, Malathi VG (2018) RNAi-mediated resistance to yellow mosaic viruses in soybean targeting coat protein gene. Acta Physiol Plant 40:1–12

    Article  CAS  Google Scholar 

  • Kung YJ, Lin SS, Huang YL, Chen TC, Harish SS, Chua NH, Yeh SD (2012) Multiple artificial microRNAs targeting conserved motifs of the replicase gene confer robust transgenic resistance to negative-sense single-stranded RNA plant virus. Mol Plant Pathol 13:303–317

    Article  CAS  PubMed  Google Scholar 

  • Kung YJ, You BJ, Raja JAJ et al (2015) Nucleotide sequence-homology-independent breakdown of transgenic resistance by more virulent virus strains and a potential solution. Sci Rep 5:9804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leibman D, Wolf D, Saharan V, Zelcer A, Arazi T, Yoel S, Gaba V, Gal-On A (2011) A high level of transgenic viral small RNA is associated with broad potyvirus resistance in cucurbits. Mol Plant Microbe Interact 24:1220–1238

    Article  CAS  PubMed  Google Scholar 

  • Leonetti P, Molinari S (2020) Epigenetic and metabolic changes in root-knot nematode-plant interactions. Int J Mol Sci 21:7759

    Article  CAS  PubMed Central  Google Scholar 

  • Li J, Todd TC, Oakley TR, Lee J, Trick HN (2010) Host-derived suppression of nematode reproductive and fitness genes decreases fecundity of Heterodera glycines Ichinohe. Planta 232:775–785

    Article  CAS  PubMed  Google Scholar 

  • Liang C, Liu H, Hao J, Li J, Luo L (2019) Expression profiling and regulatory network of cucumber microRNAs and their putative target genes in response to cucumber green mottle mosaic virus infection. ArchVirol 164:1121–1134

    CAS  Google Scholar 

  • Lindbo JA, Silva-Rosales L, Proebsting WM, Dougherty WG (1993) Induction of a highly specific antiviral state in transgenic plants - implications for regulation of gene-expression and virus-resistance. Plant Cell 5:1749–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Wang X-D, Zhao Y-Y, Li Y-J, Liu Y-C, Sun J (2015) Silencing the HaAK gene by transgenic plant-mediated RNAi impairs larval growth of Helicoverpa armigera. Int J Biol Sci 11:67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu F, Yang B, Zhang A, Ding D, Wang G (2019) Plant-mediated RNAi for controlling Apolygus lucorum. Front Plant Sci 10:64

    Article  PubMed  PubMed Central  Google Scholar 

  • Lourenço-Tessutti IT, Souza Junior JDA, Martins-de-Sa D et al (2015) Knock-down of heat-shock protein 90 and isocitrate lyase gene expression reduced root-knot nematode reproduction. Phytopathology 105:628–637

    Article  PubMed  CAS  Google Scholar 

  • Malik HJ, Raza A, Amin I, Scheffer JA, Scheffler BE, Brown JK, Mansoor S (2017) RNAi-mediated mortality of the whitefly through transgenic expression of double-stranded RNA homologous to acetylcholinesterase and ecdysone receptor in tobacco plants. Sci Rep 6:38469

    Article  CAS  Google Scholar 

  • Mamta RKRK, Rajam MV (2016) Targeting chitinase gene of Helicoverpa armigera by host-induced RNA interference confers insect resistance in tobacco and tomato. Plant Mol Biol 90:281–292

    Article  CAS  PubMed  Google Scholar 

  • Mamta B, Rajam MV (2018) RNA interference: a promising approach for crop improvement. In: Gosal SS and Wani SH (eds) Biotechnologies of crop improvement, vol 2, Springer International Publishing AG, pp 41–65

  • Mao YB, Cai WJ, Wang JW, Hong G-J, Tao X-Y, Wang L-J, Huang Y-P, Chen X-Y (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307–1313

    Article  CAS  PubMed  Google Scholar 

  • Mao Y-B, Tao X-Y, Xue X-Y, Wang L-J, Chen X-Y (2011) Cotton plants expressing CYP6AE14 double-stranded RNA show enhanced resistance to bollworms. Transgenic Res 20:665–673

    Article  CAS  PubMed  Google Scholar 

  • Matzke MA, Mosher RA (2014) RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet 15:394–408

    Article  CAS  PubMed  Google Scholar 

  • Mesterházy A, Judit Oláh J, Popp J (2020) Losses in the grain supply chain: causes and solutions. Sustainability 12:2342

    Article  Google Scholar 

  • Mezzetti B, Smagghe G, Arpaia S et al (2020) RNAi: What is its position in agriculture? J Pest Sci 93:1125–1130

    Article  Google Scholar 

  • Miroshnichenko D, Timerbaev V, Okuneva A, Klementyeva A, Sidorova T, Pushin A, Dolgov S (2020) Enhancement of resistance to PVY in intragenic marker-free potato plants by RNAi-mediated silencing of eIF4E translation initiation factors. Plant Cell Tiss Org Cult 140:691–705

    Article  CAS  Google Scholar 

  • Muniz FR, De Souza AJ, Stipp LCL, Schinor E, Freitas W, Harakava R, Stach-Machado DR, Rezende JAM, Mourão Filho FAA, Mendes BMJ (2012) Genetic transformation of Citrus sinensis with Citrus tristeza virus (CTV) derived sequences and reaction of transgenic lines to CTV infection. Biol Plant 56:162–166

    Article  CAS  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JDG (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  CAS  PubMed  Google Scholar 

  • Ngo H, Tschudi C, Gull K, Ullu E (1998) Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc Natl Acad Sci USA 95:14687–14692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu QW, Lin SS, Reyes JL, Chen K-C, Wu H-M, Yeh S-D, Chua N-H (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24:1420–1428

    Article  CAS  PubMed  Google Scholar 

  • Niu J, Jian H, Xu J, Chen C, Guo Q, Liu Q, Guo Y (2012) RNAi silencing of the Meloidogyne incognita Rpn7 gene reduces nematode parasitic success. Eur J Plant Pathol 134:131–144

    Article  CAS  Google Scholar 

  • Niu J, Liu P, Liu Q, Changlong C, Guo Q, Yin J, Yang G, Jian H (2016) Msp40 effector of root-knot nematode manipulates plant immunity to facilitate parasitism. Sci Rep 6:19443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu J, Yang WJ, Tian Y et al (2019) Topical dsRNA delivery induces gene silencing and mortality in the pea aphid. Pest Manag Sci 75:2873–2881

    Article  CAS  PubMed  Google Scholar 

  • Nowara D, Gay A, Lacomme C, Shaw J, Douchkov RD, Hensel G, Kumlehn HJ, Schweizer P (2010) HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 22:3130–3141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53:674–690

    Article  CAS  PubMed  Google Scholar 

  • Pandit NN, Russo VEA (1992) Reversible inactivation of a foreign gene, hph, during the asexual cycle in Neurospora crassa transformants. Mol Gen Genet 234:412–422

    Article  CAS  PubMed  Google Scholar 

  • Panwar V, Jordan M, McCallum B, Bakkeren G (2018) Host-induced silencing of essential genes in Puccinia triticina through transgenic expression of RNAi sequences reduces severity of leaf rust infection in wheat. Plant Biotechnol J 16:1013–1023

    Article  CAS  PubMed  Google Scholar 

  • Papolu PK, Gantasala NP, Kamaraju D, Banakar P, Sreevathsa R, Rao U (2013) Utility of host delivered RNAi of two FMRF amide like peptides, flp-14 and flp-18, for the management of root knot nematode Meloidogyne incognita. PLoS ONE 8:e80603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pareek M, Rajam MV (2017) RNAi-mediated silencing of MAP kinase signalling genes (Fmk1, Hog1, and Pbs2) in Fusarium oxysporum reduces pathogenesis on tomato plants. Fungal Biol 121:775–784

    Article  CAS  PubMed  Google Scholar 

  • Pareek M, Yogindran S, Mukherjee SK, Rajam MV (2015) Plant MicroRNAs: biogenesis, functions, and applications. In: Bahadur B, Rajam MV, Sahijram L, Krishnamurthy K (eds) Plant biology and biotechnology, vol II. Genomics and biotechnology. Springer, New Delhi, pp 630–661

    Google Scholar 

  • Pareek A, Dhankher OP, Foyer CH (2020) Mitigating the impact of climate change on plant productivity and ecosystem sustainability. J Exp Bot 71:451–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patil BL, Ogwok E, Wagaba H et al (2011) RNAi-mediated resistance to diverse isolates belonging to two virus species involved in Cassava brown streak disease. Mol Plant Pathol 12:31–41

    Article  CAS  PubMed  Google Scholar 

  • Peltier AJ, Hatfield RD, Grau CR (2009) Soybean stem lignin concentration relates to resistance to Sclerotinia sclerotiorum. Plant Dis 93:149–154

    Article  CAS  PubMed  Google Scholar 

  • Pérez CEB, Cabral GB, Aragão FJL (2020) Host-induced gene silencing for engineering resistance to Fusarium in soybean. Plant Pathol. https://doi.org/10.1111/ppa.13299

    Article  Google Scholar 

  • Petchthai U, Le Yee CS, Wong SM (2018) Resistance to CymMV and ORSV in artificial microRNA transgenic Nicotiana benthamiana plants. Sci Rep 8:1–8

    Article  CAS  Google Scholar 

  • Pitino M, Coleman AD, Maffei ME, Ridout CJ, Hogenhout SA (2011) Silencing of aphid genes by dsRNA feeding from plants. PLoS ONE 6:e25709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ploetz RC (2006) Panama disease: an old nemesis rears its ugly: head part 2. The Cavendish Era and beyond Plant Health Progress 7:36

    Article  Google Scholar 

  • Qi T, Zhu X, Tan C, Liu P, Guo J, Kang Z, Guo J (2018) Host-induced gene silencing of an important pathogenicity factor PsCPK1 in Puccinia striiformis f. sp. tritici enhances resistance of wheat to stripe rust. Plant Biotechnol J 16:797–807

    Article  CAS  PubMed  Google Scholar 

  • Qu J, Ye J, Fang R (2007) Artificial microRNA-mediated virus resistance in plants. J Virol 81:6690–6699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajam MV (2020) RNA silencing technology: A boon for crop improvement. J Biosci 45:118

    Article  CAS  PubMed  Google Scholar 

  • Ramesh SV, Shivakumar M, Praveen S, Chouhan BS, Chand S (2019) Expression of short hairpin RNA (shRNA) targeting AC2 gene of Mungbean yellow mosaic India virus (MYMIV) reduces the viral titre in soybean. 3 Biotech 9:1–9

    Article  Google Scholar 

  • Raruang Y, Omolehin O, Hu D, Wei Q, Han ZQ, Rajasekaran K, Cary JW, Wang K, Chen ZY (2020) Host induced gene silencing targeting Aspergillus flavus aflM reduced aflatoxin contamination in transgenic maize under field conditions. Front Microbiol 11:754

    Article  PubMed  PubMed Central  Google Scholar 

  • Reyes CA, PeñaEJ ZMC, Sanchez DV, Grau O, García ML (2009) Differential resistance to Citrus psorosis virus in transgenic Nicotiana benthamiana plants expressing hairpin RNA derived from the coat protein and 54K protein genes. Plant Cell Rep 28:1817–1825

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues TB, Petrick JS (2020) Safety considerations for humans and other vertebrates regarding agricultural uses of externally applied RNA molecules. Front Plant Sci 11:407

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Hernández A, Gosalvez B, Sempere RN, Burgos L, Aranda M, Truniger V (2012) Melon RNA interference (RNAi) lines silenced for Cm-eIF4E show broad virus resistance. Mol Plant Pathol 13:755–763

    Article  PubMed  PubMed Central  Google Scholar 

  • Romano N, Macino G (1992) Quelling: Transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol 6:3343–3353

    Article  CAS  PubMed  Google Scholar 

  • Schwind N, Zwiebel M, Itaya A, Ding B, Wang M-B, Krczal G, Wassenegger M (2009) RNAi-mediated resistance to potato spindle tuber viroid in transgenic tomato expressing a viroid hairpin RNA construct. Mol Plant Pathol 10:459–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma VK, Basu S, Chakraborty S (2015) RNAi mediated broad-spectrum transgenic resistance in Nicotiana benthamiana to chilli-infecting begomoviruses. Plant Cell Rep 34:1389–1399

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Nakazono-Nagaoka E, Uehara-Ichiki T, Sasaya T, Omura T (2011) Targeting specific genes for RNA interference is crucial to the development of strong resistance to Rice stripe virus. Plant Biotechnol J 9:503–512

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Ogamino T, Hiraguri A, Nakazono-Nagaoka E, Uehara-Ichiki T, Nakajima M, Akutsu K, Omura T, Sasaya T (2013) Strong resistance against Rice grassy stunt virus is induced in transgenic rice plants expressing double-stranded RNA of the viral genes for nucleocapsid or movement proteins as targets for RNA interference. Phytopathology 103:513–519

    Article  PubMed  Google Scholar 

  • Shin YH, Lee SH, Park Y (2020) Development of mite (Tetranychus urticae)-resistant transgenic Chinese cabbage using plant-mediated RNA interference. Hortic Environ Biotechnol 61:305–315

    Article  CAS  Google Scholar 

  • Shivaprasad PV, Chen H-M, Patel K, Bond DM, Santos BACM, Baulcombe D (2012) A microRNA superfamily regulates nucleotide binding site–leucine-rich repeats and other mRNAs. Plant Cell 24:859–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simón-Mateo C, García JA (2011) Antiviral strategies in plants based on RNA silencing. BBA Gene Regul Mech 1809:722–731

    Google Scholar 

  • Sindhu AS, Maier TR, Mitchum MG, Hussey RS, Davis EL, Baum TJ (2009) Effective and specific in planta RNAi in cyst nematodes: expression interference of four parasitism genes reduces parasitic success. J Exp Bot 60:315–324

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Mukherjee SK, Rajam MV (2020) Silencing of the ornithine decarboxylase gene of Fusarium oxysporum f. sp. lycopersici by host-induced RNAi confers resistance to Fusarium wilt in tomato. Plant Mol Biol Rep 38:419–429

    Article  CAS  Google Scholar 

  • Singroha G, Sharma P (2019) Epigenetic modifications in plants under abiotic stress. In: Meccariello R (ed) Epigenetics (IntechOpen), pp 84455

  • Smith NA, Singh SP, Wang MB, Stoutjesdijk PA, Green AG, Waterhouse PM (2000) Total silencing by intron-spliced hairpin RNAs. Nature 407:319–320

    Article  CAS  PubMed  Google Scholar 

  • Smith MK, Hamill SD, Langdon PW, Giles JE, Doogan VJ, Pegg KG (2006) Towards the development of a Cavendish banana resistant to race 4 of fusarium wilt: gamma irradiation of micro-propagated Dwarf Parfitt (Musa spp., AAA group, Cavendish subgroup). Aust J Exp Agric 46:107–113

    Article  Google Scholar 

  • Song Y, Thomma BP (2018) Host-induced gene silencing compromises Verticillium wilt in tomato and Arabidopsis. Mol Plant Pathol 19:77–89

    Article  CAS  PubMed  Google Scholar 

  • Steeves RM, Todd TC, Essig JS, Trick HN (2006) Transgenic soybeans expressing siRNAs specific to a major sperm protein gene suppress Heterodera glycines reproduction. Funct Plant Biol 33:991–999

    Article  CAS  PubMed  Google Scholar 

  • Su X, Lu G, Li X et al (2020) Host-induced gene silencing of an adenylate kinase gene involved in fungal energy metabolism improves plant resistance to Verticillium dahliae. Biomolecules 10:127

    Article  CAS  PubMed Central  Google Scholar 

  • Sudan J, Raina M, Singh R (2018) Plant epigenetic mechanisms: role in abiotic stress and their generational heritability. 3 Biotech 8:172

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun F, Fang P, Li J, Du L, Lan Y, Zhou T, Fan Y, Shen W, Zhou Y (2016) RNA-seq-based digital gene expression analysis reveals modification of host defense responses by rice stripe virus during disease symptom development in Arabidopsis. Virol J 13:1–13

    Article  CAS  Google Scholar 

  • Tang W, Luo X, Sanmuels V (2001) Gene silencing: Double-stranded RNA mediated mRNA degradation and gene inactivation. Cell Res 11:181–186

    Article  CAS  PubMed  Google Scholar 

  • Tetorya M, Rajam MV (2018) RNA silencing of PEX 6 gene causes decrease in pigmentation, sporulation and pathogenicity of Fusarium oxysporum. Plant Pathol 67:67–75

    Article  CAS  Google Scholar 

  • Thakare D, Zhang J, Wing RA, Cotty PJ, Schmidt MA (2017) Aflatoxin-free transgenic maize using host-induced gene silencing. Sci Adv 3:e1602382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thakur O, Prasad R (2020) Engineering resistance to Alternaria cyamopsidis by RNAi mediated gene silencing of chitin synthase export chaperone CHS7 in guar. Physiol Mol Plant Pathol 112:101541

    Article  CAS  Google Scholar 

  • Thakur N, Upadhyay SK, Verma PC, Chandrashekar K, Tuli R, Singh PK (2014) Enhanced whitefly resistance in transgenic tobacco plants expressing double stranded RNA of v-ATPase A gene. PLoS ONE 9:e87235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thakur A, Suman S, Sundaresha S et al (2015) Artificial microRNA mediated gene silencing of Phytophthora infestans single effector Avr3a gene imparts moderate type of late blight resistance in potato. Plant Pathol J 14:1–12

    Article  CAS  Google Scholar 

  • Tian B, Li J, Oakley TR, Todd TC, Trick HN (2016) Host-derived artificial microRNA as an alternative method to improve soybean resistance to soybean cyst nematode. Genes 7:122

    Article  PubMed Central  CAS  Google Scholar 

  • Tian B, Li J, Vodkin LO, Todd TC, Finer JJ, Trick HN (2019) Host-derived gene silencing of parasite fitness genes improves resistance to soybean cyst nematodes in stable transgenic soybean. Theor Appl Genet 132:2651–2662

    Article  PubMed  PubMed Central  Google Scholar 

  • Tiwari M, Sharma D, Trivedi PK (2014) Artificial microRNA mediated gene silencing in plants: progress and perspectives. Plant Mol Biol 86:1–18

    Article  CAS  PubMed  Google Scholar 

  • Tyagi H, Rajasubramaniam RMV, Dasgupta I (2008) RNA-interference in rice against Rice tungro bacilliform virus results in its decreased accumulation in inoculated rice plants. Transgenic Res 17:897–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyagi S, Sharma S, Ganie SA, Tahir M, Mir RR, Pandey R (2019) Plant microRNAs: biogenesis, gene silencing, web-based analysis tools and their use as molecular markers. 3 Biotech 9:413–413

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanderschuren H, Alder A, Zhang P, Gruissem W (2009) Dose-dependent RNAi-mediated geminivirus resistance in the tropical root crop cassava. Plant Mol Biol 70:265–272

    Article  CAS  PubMed  Google Scholar 

  • Vieira P, Akker SEVD, Verma R, Wantoch S, Eisenback JD, Kamo K (2015) The Pratylenchus penetrans transcriptome as a source for the development of alternative control strategies: mining for putative genes involved in parasitism and evaluation of in planta RNAi. PLoS ONE 10:e0144674

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vu TV, Choudhury NR, Mukherjee SK (2013) Transgenic tomato plants expressing artificial microRNAs for silencing the pre-coat and coat proteins of a begomovirus, Tomato leaf curl New Delhi virus, show tolerance to virus infection. Virus Res 172:35–45

    Article  CAS  PubMed  Google Scholar 

  • Walawage SL, Britton MT, Leslie CA, Uratsu SL, Li Y, Dandekar A (2013) Stacking resistance to crown gall and nematodes in walnut rootstocks. BMC Genomics 14:1–13

    Article  CAS  Google Scholar 

  • Wang F, Li W, Zhu J et al (2016a) Hairpin RNA targeting multiple viral genes confers strong resistance to rice black-streaked dwarf virus. Int J Mol Sci 17:705

    Article  PubMed Central  CAS  Google Scholar 

  • Wang M, Weiberg A, Lin F-M, Thomma BPHJ, Huang H-D, Jin H (2016b) Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat Plants 2:16151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Wu L, Mei Y, Zhao Y, Ma Z, Zhang X, Chen Y (2020) Host-induced gene silencing of multiple genes of Fusarium graminearum enhances resistance to Fusarium head blight in wheat. Plant Biotechnol J 18:2373–2375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waterhouse PM, Graham MW, Wang MB (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA 95:13959–13964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei C, Qin T, Li Y, Wang W, Dong T, Wang Q (2020) Host-induced gene silencing of the acetolactate synthases VdILV2 and VdILV6 confers resistance to Verticillium wilt in cotton (Gossypium hirsutum L.). Biochem Biophys Res Commun 524:392–397

    Article  CAS  PubMed  Google Scholar 

  • Widyaningrum S, Pujiasih DR, Sholeha W, Harmoko R, Sugiharto B (2021) Induction of resistance to sugarcane mosaic virus by RNA interference targeting coat protein gene silencing in transgenic sugarcane. Mol Biol Rep 48:3047–3054

    Article  CAS  PubMed  Google Scholar 

  • Wilson R, Doudna JA (2013) Molecular mechanisms of RNA interference. Annu Rev Biophys 42:217–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin M, Wang Y, Yao Y, Xie C, Peng H, Ni Z, Sun Q (2010) Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biol 10:123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiong Y, Zeng H, Zhang Y, Xu D, Qiu D (2013) Silencing the HaHR3 gene by transgenic plant-mediated RNAi to disrupt Helicoverpa armigera development. Int J Biol Sci 9:370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiong F, Liu M, Zhuo F et al (2019) Host-induced gene silencing of BcTOR in Botrytis cinerea enhances plant resistance to grey mould. Mol Plant Pathol 20:1722–1739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Duan X, Lv Y, Zhang X, Nie Z, Xie C, Ni Z, Liang R (2014) Silencing of an aphid carboxylesterase gene by use of plant-mediated RNAi impairs Sitobion avenae tolerance of Phoxim insecticides. Transgenic Res 23:389–396

    Article  CAS  PubMed  Google Scholar 

  • Xue B, Hamamouch N, Li C, Huang G, Hossey RS, Baum TJ, Davis EL (2013) The 8D05 parasitism gene of Meloidogyne incognita is required for successful infection of host roots. Phytopathology 103:175–181

    Article  CAS  PubMed  Google Scholar 

  • Yadav BC, Veluthambi K, Subramaniam K (2006) Host-generated double stranded RNA induces RNAi in plant-parasitic nematodes and protects the host from infection. Mol Biochem Parasitol 148:219–222

    Article  CAS  PubMed  Google Scholar 

  • Yadav JS, Ogwok E, Wagaba H, Patil BL, Bagewadi B, Alicai T, Eliana G-S, Taylor NJ, Fauquet CM (2011) RNAi-mediated resistance to Cassava brown streak Uganda virus in transgenic cassava. Mol Plant Pathol 12:677–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan S, Ren B, Zeng B, Shen J (2020) Improving RNAi efficiency for pest control in crop species. Biotechniques 68:283–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Niu L, Zhang W, Yang J, Xing G, He H, Guo D, Du Q, Qian X, Yao Y, Li Q (2018) RNAi-mediated SMV P3 cistron silencing confers significantly enhanced resistance to multiple Potyvirus strains and isolates in transgenic soybean. Plant Cell Rep 37:103–114

    Article  CAS  PubMed  Google Scholar 

  • Yara A, Yaeno T, Hasegawa M, Seto H, Montillet J-L, Kusumi K, Seo S, Iba K (2007) Disease resistance against Magnaporthe grisea is enhanced in transgenic rice with suppression of ω-3 fatty acid desaturases. Plant Cell Physiol 48:1263–1274

    Article  CAS  PubMed  Google Scholar 

  • Yin C, Jurgenson JE, Hulbert SH (2011) Development of a host-induced RNAi system in the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Mol Plant Microbe Interact 24:554–561

    Article  CAS  PubMed  Google Scholar 

  • Yogindran S, Rajam MV (2015) RNAi for crop improvement. In: Bahadur B, Rajam MV, Sahijram L, Krishnamurthy K (eds) Plant biology and biotechnology, vol II. Genomics and biotechnology. Springer, India, pp 623–637

    Chapter  Google Scholar 

  • Yogindran S, Rajam MV (2016) Artificial miRNA-mediated silencing of ecdysone receptor (EcR) affects larval development and oogenesis in Helicoverpa armigera. Insect Biochem Mol Biol 77:21–30

    Article  CAS  PubMed  Google Scholar 

  • Yogindran S, Rajam MV (2020) Host-derived artificial miRNA-mediated silencing of ecdysone receptor gene provides enhanced resistance to Helicoverpa armigera in tomato. Genomics S0888–7543:31963–31967

    Google Scholar 

  • Yu R, Xu X, Liang Y, Tian H, Pan Z, Jin S, Wang N, Zhang W (2014) The insect ecdysone receptor is a good potential target for RNAi-based pest control. Int J Biol Sci 10:1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zha W, Peng X, Chen R, Du B, Zhu L, He G (2011) Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the hemipteran insect Nilaparvata lugens. PLoS ONE 6:e20504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai J, Jeong DH, De Paoli E et al (2011) MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev 25:2540–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Li H, Zhang J, Zhang C, Gong P, Ziaf K, Xiao F, Ye Z (2011a) Expression of artificial microRNAs in tomato confers efficient and stable virus resistance in a cell-autonomous manner. Transgenic Res 20:569–581

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Sato S, Ye X, Dorrance AE, Morris TJ, Clemente E, Qu F (2011b) Robust RNAi-based resistance to mixed infection of three viruses in soybean plants expressing separate short hairpins from a single transgene. Phytopathology 101:1264–1269

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZY, Yang L, Zhou SF, Wang HG, Li WC, Fu FL (2011c) Improvement of resistance to maize dwarf mosaic virus mediated by transgenic RNA interference. J Biotechnol 153:181–187

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Li H, Guan R, Miao X (2015) Lepidopteran insect species-specific, broad-spectrum, and systemic RNA interference by spraying dsRNA on larvae. Entomol Exp Appl 155:218–228

    CAS  Google Scholar 

  • Zhang H, Tao Z, Hong H, Chen Z, Wu C, Li X, Xiao J, Wang S (2016) Transposon-derived small RNA is responsible for modified function of WRKY45 locus. Nat Plants 2:16016

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Sui X, Xu L, Liu G, Lu L, You M, Xie C, Li B, Ni Z, Liang R (2018) Plant-mediated RNAi of grain aphid CHS1 gene confers common wheat resistance against aphids. Pest Manag Sci 74:2754–2760

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Hu Y, Yan S, Zhou H, Song D, Yin M, Shen J (2019) A polymer/detergent formulation improves dsRNA penetration through the body wall and RNAi-induced mortality in the soybean aphid Aphis glycines. Pest Manag Sci 75:1993–1999

    Article  CAS  PubMed  Google Scholar 

  • Zhi P, Chang C (2021) Exploiting epigenetic variations for crop disease resistance improvement. Front Plant Sci 12:692328

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu JQ, Liu S, Ma Y et al (2012) Improvement of pest resistance in transgenic tobacco plants expressing dsRNA of an insect-associated gene EcR. PLoS ONE 7:e38572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuo K, Chen J, Lin B, Wang J, Sun F, Hu L, Liao J (2017) A novel Meloidogyne enterolobii effector MeTCTP promotes parasitism by suppressing programmed cell death in host plants. Mol Plant Pathol 18:45–54

    Article  CAS  PubMed  Google Scholar 

  • Zubair M, Khan MZ, Rauf I, Amin I, Mansoor S (2020) Artificial microRNA (amiRNA)-mediated resistance against whitefly (Bemisia tabaci) targeting three genes. Crop Prot 137:105308

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Department of Biotechnology (DBT) and Department of Science and Technology (DST), New Delhi for generous support of the RNAi programmes in the lab of MVR. MVR is grateful to the University Grants Commission (UGC), New Delhi for BSR Faculty Fellowship. RK acknowledges the Dr. D. S. Kothari Postdoctoral Fellowship from UGC. We also thank the UGC for SAP (DRS-III) and DST-FIST (Level 2) programmes and DU-DST PURSE (Phase II) grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manchikatla Venkat Rajam.

Additional information

This review article is dedicated in the honour of Late Prof. S. C. Maheshwari for his invaluable contributions in the field of plant biology and biotechnology.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, R., Choudhury, A., Chauhan, S. et al. RNA interference and crop protection against biotic stresses. Physiol Mol Biol Plants 27, 2357–2377 (2021). https://doi.org/10.1007/s12298-021-01064-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-021-01064-5

Keywords

Navigation