skip to main content
research-article
Open Access

SGN: Sparse Gauss-Newton for Accelerated Sensitivity Analysis

Published:22 September 2021Publication History
Skip Abstract Section

Abstract

We present a sparse Gauss-Newton solver for accelerated sensitivity analysis with applications to a wide range of equilibrium-constrained optimization problems. Dense Gauss-Newton solvers have shown promising convergence rates for inverse problems, but the cost of assembling and factorizing the associated matrices has so far been a major stumbling block. In this work, we show how the dense Gauss-Newton Hessian can be transformed into an equivalent sparse matrix that can be assembled and factorized much more efficiently. This leads to drastically reduced computation times for many inverse problems, which we demonstrate on a diverse set of examples. We furthermore show links between sensitivity analysis and nonlinear programming approaches based on Lagrange multipliers and prove equivalence under specific assumptions that apply for our problem setting.

Skip Supplemental Material Section

Supplemental Material

References

  1. Michele Benzi, Gene H. Golub, and Jörg Liesen. 2005. Numerical solution of saddle point problems. Acta Numer. 14 (2005), 1.Google ScholarGoogle ScholarCross RefCross Ref
  2. Miklós Bergou, Basile Audoly, Etienne Vouga, Max Wardetzky, and Eitan Grinspun. 2010. Discrete viscous threads. ACM Trans. Graph. 29, 4, Article 116 (July 2010). DOI:https://doi.org/10.1145/1778765.1778853 Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Gaurav Bharaj, David I. W. Levin, James Tompkin, Yun Fei, Hanspeter Pfister, Wojciech Matusik, and Changxi Zheng. 2015. Computational design of metallophone contact sounds. ACM Trans. Graph. 34, 6, Article 223 (Oct. 2015). DOI:https://doi.org/10.1145/2816795.2818108 Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Kai-Uwe Bletzinger, Matthias Firl, Johannes Linhard, and Roland Wüchner. 2010. Optimal shapes of mechanically motivated surfaces. Computer Methods Appl. Mechanics Eng. 199, 5–8 (2010), 324–333.Google ScholarGoogle ScholarCross RefCross Ref
  5. Xiang Chen, Changxi Zheng, Weiwei Xu, and Kun Zhou. 2014. An asymptotic numerical method for inverse elastic shape design. ACM Trans. Graph. 33, 4, Article 95 (July 2014). DOI:https://doi.org/10.1145/2601097.2601189 Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Stelian Coros, Bernhard Thomaszewski, Gioacchino Noris, Shinjiro Sueda, Moira Forberg, Robert W. Sumner, Wojciech Matusik, and Bernd Bickel. 2013. Computational design of mechanical characters. ACM Trans. Graph. (TOG) 32, 4 (2013), 83. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Juan Carlos De los Reyes. 2015. Numerical PDE-Constrained Optimization. Springer.Google ScholarGoogle Scholar
  8. Damien Gauge, Stelian Coros, Sandro Mani, and Bernhard Thomaszewski. 2014. Interactive design of modular tensegrity characters. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 131–138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Moritz Geilinger, David Hahn, Jonas Zehnder, Moritz Bächer, Bernhard Thomaszewski, and Stelian Coros. 2020. ADD: Analytically differentiable dynamics for multi-body systems with frictional contact. ACM Trans. Graph. (TOG) 39, 6 (2020). Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Yotam Gingold, Adrian Secord, Jefferson Y. Han, Eitan Grinspun, and Denis Zorin. 2004. A discrete model for inelastic deformation of thin shells. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation.Google ScholarGoogle Scholar
  11. Eitan Grinspun, Anil N. Hirani, Mathieu Desbrun, and Peter Schröder. 2003. Discrete shells. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA’03). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 62–67. http://dl.acm.org/citation.cfm?id=846276.846284 Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Ruslan Guseinov, Eder Miguel, and Bernd Bickel. 2017. CurveUps: Shaping objects from flat plates with tension-actuated curvature. ACM Trans. Graph. 36, 4, Article 64 (July 2017). DOI:https://doi.org/10.1145/3072959.3073709 Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. S.-P. Han and O. Fujiwara. 1985. An inertia theorem for symmetric matrices and its application to nonlinear programming. Linear Algebra Appl. 72 (1985), 47–58.Google ScholarGoogle ScholarCross RefCross Ref
  14. Matthias Heinkenschloss. 1996. Projected sequential quadratic programming methods. SIAM J. Optim. 6, 2 (1996), 373–417. DOI:https://doi.org/10.1137/0806022Google ScholarGoogle ScholarCross RefCross Ref
  15. Caigui Jiang, Chengcheng Tang, Hans-Peter Seidel, and Peter Wonka. 2017. Design and volume optimization of space structures. ACM Trans. Graph. 36, 4, Article 159 (July 2017). DOI:https://doi.org/10.1145/3072959.3073619 Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Martin Kilian, Aron Monszpart, and Niloy J. Mitra. 2017. String actuated curved folded surfaces. ACM Trans. Graph. 36, 3, Article 25 (May 2017). DOI:https://doi.org/10.1145/3015460 Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Shahar Z. Kovalsky, Meirav Galun, and Yaron Lipman. 2016. Accelerated quadratic proxy for geometric optimization. ACM Trans. Graph. 35, 4, Article 134 (July 2016). DOI:https://doi.org/10.1145/2897824.2925920 Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Felix Lenders, Christian Kirches, and Andreas Potschka. 2018. Trlib: A vector-free implementation of the GLTR method for iterative solution of the trust region problem. Optim. Methods Softw. 33, 3 (2018), 420–449.Google ScholarGoogle ScholarCross RefCross Ref
  19. Tiantian Liu, Sofien Bouaziz, and Ladislav Kavan. 2017. Quasi-Newton methods for real-time simulation of hyperelastic materials. ACM Trans. Graph. 36, 4, Article 116a (May 2017). DOI:https://doi.org/10.1145/3072959.2990496 Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Mickaël Ly, Romain Casati, Florence Bertails-Descoubes, Mélina Skouras, and Laurence Boissieux. 2018. Inverse elastic shell design with contact and friction. ACM Trans. Graph. 37, 6, Article 201 (November 2018). DOI:https://doi.org/10.1145/3272127.3275036 Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Vittorio Megaro, Jonas Zehnder, Moritz Bächer, Stelian Coros, Markus Gross, and Bernhard Thomaszewski. 2017. A Computational design tool for compliant mechanisms. ACM Trans. Graph. 36, 4, Article 82 (July 2017). DOI:https://doi.org/10.1145/3072959.3073636 Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Rajaditya Mukherjee, Longhua Wu, and Huamin Wang. 2018. Interactive two-way shape design of elastic bodies. Proc. ACM Comput. Graph. Interact. Tech. 1, 1, Article 11 (July 2018). DOI:https://doi.org/10.1145/3203196 Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Przemyslaw Musialski, Christian Hafner, Florian Rist, Michael Birsak, Michael Wimmer, and Leif Kobbelt. 2016. Non-linear shape optimization using local subspace projections. ACM Trans. Graph. 35, 4, Article 87 (July 2016). DOI:https://doi.org/10.1145/2897824.2925886 Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. J. Panetta, M. Konaković-Luković, F. Isvoranu, E. Bouleau, and M. Pauly. 2019. X-Shells: A new class of deployable beam structures. ACM Trans. Graph. 38, 4, Article 83 (July 2019). DOI:https://doi.org/10.1145/3306346.3323040 Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Richard Peng and Santosh Vempala. 2020. Solving Sparse Linear Systems Faster than Matrix Multiplication. (2020). arxiv:2007.10254 Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Yue Peng, Bailin Deng, Juyong Zhang, Fanyu Geng, Wenjie Qin, and Ligang Liu. 2018. Anderson acceleration for geometry optimization and physics simulation. ACM Trans. Graph. 37, 4, Article 42 (July 2018). DOI:https://doi.org/10.1145/3197517.3201290 Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Jesús Pérez, Miguel A. Otaduy, and Bernhard Thomaszewski. 2017. Computational design and automated fabrication of Kirchhoff-plateau surfaces. ACM Trans. Graph. 36, 4, Article 62 (July 2017). DOI:https://doi.org/10.1145/3072959.3073695 Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Nico Pietroni, Marco Tarini, Amir Vaxman, Daniele Panozzo, and Paolo Cignoni. 2017. Position-based tensegrity design. ACM Trans. Graph. 36, 6, Article 172 (Nov. 2017). DOI:https://doi.org/10.1145/3130800.3130809 Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Adriana Schulz, Harrison Wang, Eitan Grinspun, Justin Solomon, and Wojciech Matusik. 2018. Interactive exploration of design trade-offs. ACM Trans. Graph. 37, 4, Article 131 (July 2018). DOI:https://doi.org/10.1145/3197517.3201385 Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Mélina Skouras, Bernhard Thomaszewski, Bernd Bickel, and Markus Gross. 2012. Computational design of rubber balloons. In Computer Graphics Forum, Vol.  31. Wiley Online Library, 835–844. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Mélina Skouras, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, and Markus Gross. 2013. Computational design of actuated deformable characters. ACM Trans. Graph. (TOG) 32, 4 (2013), 82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Mélina Skouras, Bernhard Thomaszewski, Peter Kaufmann, Akash Garg, Bernd Bickel, Eitan Grinspun, and Markus Gross. 2014. Designing inflatable structures. 33, 4, Article 63 (July 2014). DOI:http://dx.doi.org/10.1145/2601097.2601166 Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Antonio Tomas and Pascual Martí-Montrull. 2010. Optimality of Candela’s concrete shells: A study of his posthumous design. J. Int. Assoc. Shell Spatial Structures 51 (2010), 67–77.Google ScholarGoogle Scholar
  34. Nobuyuki Umetani, Danny M. Kaufman, Takeo Igarashi, and Eitan Grinspun. 2011. Sensitive couture for interactive garment modeling and editing.ACM Trans. Graph. 30, 4 (2011), 90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Nobuyuki Umetani, Athina Panotopoulou, Ryan Schmidt, and Emily Whiting. 2016. Printone: Interactive resonance simulation for free-form print-wind instrument design. ACM Trans. Graph. 35, 6, Article 184 (Nov. 2016). DOI:https://doi.org/10.1145/2980179.2980250 Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Henk A. Van der Vorst. 1992. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 2 (1992), 631–644. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Etienne Vouga, Mathias Höbinger, Johannes Wallner, and Helmut Pottmann. 2012. Design of self-supporting surfaces. ACM Trans. Graph. 31, 4, Article 87 (July 2012). DOI:https://doi.org/10.1145/2185520.2185583 Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Huamin Wang. 2018. Rule-free sewing pattern adjustment with precision and efficiency. ACM Trans. Graph. 37, 4, Article 53 (July 2018). DOI:https://doi.org/10.1145/3197517.3201320 Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Guowei Yan, Wei Li, Ruigang Yang, and Huamin Wang. 2018. Inexact descent methods for elastic parameter optimization. ACM Trans. Graph. 37, 6, Article 253 (Dec. 2018). DOI:https://doi.org/10.1145/3272127.3275021 Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Jonas Zehnder, Stelian Coros, and Bernhard Thomaszewski. 2016. Designing structurally-sound ornamental curve networks. ACM Trans. Graph. 35, 4, Article 99 (2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Jonas Zehnder, Espen Knoop, Moritz Bächer, and Bernhard Thomaszewski. 2017. Metasilicone: Design and fabrication of composite silicone with desired mechanical properties. ACM Trans. Graph. 36, 6, Article 240 (Nov. 2017). DOI:https://doi.org/10.1145/3130800.3130881 Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Yufeng Zhu, Robert Bridson, and Danny M. Kaufman. 2018. Blended cured quasi-newton for distortion optimization. ACM Trans. Graph. 37, 4, Article 40 (July 2018). DOI:https://doi.org/10.1145/3197517.3201359 Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Simon Zimmermann, Roi Poranne, James M. Bern, and Stelian Coros. 2019. PuppetMaster: Robotic animation of marionettes. ACM Trans. Graph. (TOG) 38, 4 (2019), 103. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. SGN: Sparse Gauss-Newton for Accelerated Sensitivity Analysis

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 41, Issue 1
          February 2022
          178 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/3484929
          Issue’s Table of Contents

          Copyright © 2021 Copyright held by the owner/author(s).

          Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 22 September 2021
          • Accepted: 1 June 2021
          • Revised: 1 May 2021
          • Received: 1 November 2020
          Published in tog Volume 41, Issue 1

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format