Skip to main content
Log in

Changes in the Structure of the High-Molecular-Weight Components of a High-Sulfur Vacuum Residue in the Initiated Cracking Process

Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The transformations undergone by the high-molecular-weight heteroatomic compounds (resins, asphaltenes) of the Novokuibyshevsk Refinery vacuum residue during thermal cracking at 500°C in the presence of additives such as calcium carbonate and calcium acetate were studied. The characteristic changes in the composition of the cracking products depending on the amount of the additive were demonstrated. Based on the data from 1H NMR spectroscopy, elemental analysis, and molecular weight measurements, the structural-group parameters of the resin and asphaltene molecules in the original vacuum residue and in the products of its cracking in the presence of different amounts of the additives were determined. The heterogeneous additives (≤0.5 wt %) afforded deeper degradation of resins and asphaltenes. The resin molecules underwent compaction due to destruction of the saturated rings and aliphatic moieties, followed by an increase in the content of oils in the liquid cracking products composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

REFERENCES

  1. Sosnin, G.A., Zaikina, O.O., Eletskii, P.M., and Yakovlev, V.A., Izv. Tomsk. Politekhn. Univ., Inzh. Georesur., 2018, vol. 329, no. 12, pp. 145–154. https://doi.org/10.18799/24131830/2018/12/30

    Article  Google Scholar 

  2. Sawarkar, A.N., Petrol. Sci. Technol., 2019, vol. 37, no. 9, pp. 1090–1098. https://doi.org/10.1080/10916466.2019.1575875

    Article  CAS  Google Scholar 

  3. Dorokhin, V.P. and Palii, A.O., Neftepromysl. Delo, 2004, no. 5, pp. 47–50.

    Google Scholar 

  4. Leon, A.Y., Guzman, A., Laverde, D., Chaudhari, R.V., Subramaniam, B., and Bravo-Suarez, J.J., Energy Fuels, 2017, vol. 31, no. 4, pp. 3868–3877. https://doi.org/10.1021/acs.energyfuels.7b00078

    Article  CAS  Google Scholar 

  5. Che, Y., Hao, J., Zhang, J., Qiao, Y., Li, D., and Tian, Y., Energy Fuels, 2018, vol. 32, no. 2, pp. 1348–1357. https://doi.org/10.1021/acs.energyfuels.7b03364

    Article  CAS  Google Scholar 

  6. Kaminski, T. and Husein, M.M., Fuel Process. Technol., 2018, vol. 181, pp. 331–339. https://doi.org/10.1016/j.fuproc.2018.10.014

    Article  CAS  Google Scholar 

  7. Sahu, R., Song, B.J., Im, J.S., Jeon, Y., and Lee, Ch.W., J. Ind. Eng. Chem., 2015, vol. 27, pp. 12–24. https://doi.org/10.1016/j.jiec.2015.01.011

    Article  CAS  Google Scholar 

  8. Lababidi, H.M.S., Sabti, H.M., and Al Humaidan, F.S., Fuel, 2014, vol. 117, pp. 59–67. https://doi.org/10.1016/j.fuel.2013.09.048

    Article  CAS  Google Scholar 

  9. Gawel, I., Boviarska, D., and Biskupski, P., Appl. Catal., A: Gen., 2005, vol. 295, no. 1, pp. 89–94. https://doi.org/10.1016/j.apcata.2005.08.001

    Article  CAS  Google Scholar 

  10. Verstraete, J.J., Schnongs, Ph., Dulot, H., and Hudebine, D., Chem. Eng. Sci., 2010, vol. 65, pp. 304–312. https://doi.org/10.1016/j.ces.2009.08.033

    Article  CAS  Google Scholar 

  11. Boysen, R.B. and Schabron, J.F., Energy Fuels, 2013, vol. 27, pp. 4654–4661. https://doi.org/10.1021/ef400952b

    Article  CAS  Google Scholar 

  12. Sjoblom, J., Simon, S., and Xu, Zh., Adv. Colloid Interface Sci., 2015, vol. 218, pp. 1–16. https://doi.org/10.1016/j.cis.2015.01.002

    Article  CAS  PubMed  Google Scholar 

  13. Flego, C. and Zannoni, C., Energy Fuels, 2010, vol. 24, no. 11, pp. 6041–6053. https://doi.org/10.1021/ef100984y

    Article  CAS  Google Scholar 

  14. Wong, G.K. and Yen, T.F., J. Petrol. Sci. Eng., 2000, no. 28, pp. 55–64.

    Article  CAS  Google Scholar 

  15. Galimova, G.A., Yusupova, T.N., Ibragimova, D.A., and Yakupov, I.R., Vestn. Kazan. Tekhnol. Univ., 2015, vol. 18, no. 20, pp. 60–64.

    CAS  Google Scholar 

  16. Ancheyta, J., Trejo, F., and Rana, M.S., Asphaltenes Chemical Transformation during Hydroprocessing of Heavy Oils, New York: CRC Press–Taylor & Francis Group, 2009, p. 441.

  17. Chiaberge, S., Guglielmetti, G., Montanari, L., Salvalaggio, M., Santolini, L., Spera, S., and Cesti, P., Energy Fuels, 2009, vol. 23, pp. 4486–4495. https://doi.org/10.1021/ef900206n

    Article  CAS  Google Scholar 

  18. Syroezhko, A.M., Abdelhafid, F., Malov, I.M., Potekhin, V.M., Larina, N.V., Blokhin, A.I., Gol’mshtok, E.I., Kozhitsev, D.V., Petrov, M.S., Salikhov, R.M., and Onufrienko, S.V., RF Patent 2338773, 2008.

  19. Stukov, M.I., Zagainov, V.S., Posokhov, Yu.M., Kosorogov, S.A., Zorin, M.V., Chernavin, A.Yu., Kobelev, V.A., Valyavin, G.G., Zaporin, V.P., Sukhov, S.V., Bidilo, I.V., and Mamaev, M.V., RF Patent 2451056, 2012.

  20. Murakami, K., Sato, M., Tsubouchi, N., Ohtsuka, Ya., and Sugawara, K., Fuel Proc. Technol., 2015, vol. 129, pp. 91–97. https://doi.org/10.1016/j.fuproc.2014.08.023

    Article  CAS  Google Scholar 

  21. Liu, Sh., Wang, M., Zhang, K., Yu, Zh., Yang, S., Shangguan, J., Zhang, G., Du, W., Li, J., and Liu, Yu., Carbon Resour. Convers., 2021, vol. 4, pp. 142–149. https://doi.org/10.1016/j.crcon.2021.04.001

    Article  CAS  Google Scholar 

  22. Zhang, Yu., Cui, H., Yi, W., Song, F., Zhao, P., Wang, L., and Cui, J., Biomass Bioenergy, 2017, vol. 102, pp. 13–22. https://doi.org/10.1016/j.biombioe.2017.04.004

    Article  CAS  Google Scholar 

  23. Krivtsov, E.B., Sviridenko, N.N., and Golovko, A.K., RF Patent 2664548, 2018.

  24. Khadzhiev, S.N., Kadiev, Kh.M., Basin, M.B., Imarov, A.K., and Usmanov, R.M., RF Patent 1587911, 1994.

  25. Wang, X., Xie, X., Sun, J., and Liao, W., Bioresour. Technol., 2019, vol. 275, pp. 123–129. https://doi.org/10.1016/j.biortech.2018.12.047

    Article  CAS  PubMed  Google Scholar 

  26. Kam’yanov, V.F., Filimonova, T.A., Gorbunova, L.V., Lebedev, A.K., Sivirilov, P.P., Beiko, O.A., Golovko, A.K., Plyusnin, A.K., and Savinykh, Yu.V., Khimicheskii sostav neftei Zapadnoi Sibiri (Chemical Composition of Oils in Western Siberia), Novosibirsk: Nauka, Sib. Otd., 1988.

  27. Kam’yanov, V.F. and Bol’shakov, G.F., Neftekhimiya, 1984, vol. 24, no. 4, pp. 443–449.

    Google Scholar 

  28. Patrakov, Yu.F., Kamyanov, V.F., and Fedyaeva, O.N., Fuel, 2005, vol. 84, pp. 189–199. https://doi.org/10.1016/j.fuel.2004.08.021

    Article  CAS  Google Scholar 

  29. Krivtsov, E.B. and Goncharov, A.V., Petrol. Chem., 2020, vol. 60, no. 3, pp. 358–364. https://doi.org/10.1134/S0965544120030111

    Article  CAS  Google Scholar 

Download references

Funding

This study was carried out within the framework of the State assignment of the Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences, and was financially supported by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Goncharov.

Ethics declarations

The authors declare that they have no conflicts of interest requiring disclosure in this article.

Additional information

Translated from Neftekhimiya, 2021, Vol. 61, No. 5, pp. 704–712 https://doi.org/10.31857/S0028242121050130.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goncharov, A.V., Krivtsov, E.B. Changes in the Structure of the High-Molecular-Weight Components of a High-Sulfur Vacuum Residue in the Initiated Cracking Process. Pet. Chem. 61, 1071–1078 (2021). https://doi.org/10.1134/S0965544121090061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544121090061

Keywords:

Navigation