Skip to main content

Advertisement

Log in

Quantitative T1 mapping MRI for the assessment of extraocular muscle fibrosis in thyroid-associated ophthalmopathy

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

We aimed to investigate the performance of T1 mapping and its histological correlation with extraocular muscle fibrosis in thyroid-associated ophthalmopathy (TAO).

Methods

We prospectively recruited 12 cases of active TAO, 12 cases of inactive TAO, and 15 cases of control subjects. All participants underwent magnetic resonance imaging (MRI) scan with pre-/postcontrast T1 mapping and short-time inversion-recovery (STIR) sequence. The images were analyzed to obtain precontrast T1, extracellular-volume (ECV) fraction on T1 mapping, and signal-intensity ratio (SIR) on STIR for each rectus. Muscle biopsy was performed at lateral rectus to quantify-collagen volume fraction, glycosaminoglycan (GAG)-volume fraction, and extracellular space component. The relationship between MRI and histopathology was examined with Pearson correlation coefficient.

Results

The active TAO group was characterized with GAG accumulation, while the inactive TAO group presented with substantial fibrosis. The MRI parameters achieved acceptable interobserver and intraobserver agreement. The precontrast T1 and ECV remarkably increased in the TAO groups than the control group, and ECV positively correlated with collagen-volume fraction (r = 0.913) and extracellular-space component (r = 0.886) in the inactive TAO group. The SIR statistically increased in the active TAO group, and SIR positively correlated with GAG-volume fraction in all three groups. The performance of ECV (cutoff > 48.1%) to screen out extraocular muscle fibrosis in inactive TAO was 60.9% sensitivity and 93.3% specificity.

Conclusions

The ECV parameter on T1 mapping MRI is a reliable tool to quantify extraocular muscle fibrosis, providing insights into noninvasive evaluation of pathological changes in TAO orbit.

Trial registration number

ChiCTR2000040394; Date of registration: 28 November 2020

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the present study are available from the corresponding author upon reasonable request.

References

  1. R.S. Bahn, Graves’ ophthalmopathy. N. Engl. J. Med. 362(8), 726–738 (2010)

    Article  CAS  Google Scholar 

  2. N.M. Hodgson, F. Rajaii, Current understanding of the progression and management of thyroid associated orbitopathy: A systematic review. Ophthalmol. Ther. 9(1), 21–33 (2020)

    Article  Google Scholar 

  3. P.N. Taylor, L. Zhang, R.W.J. Lee, I. Muller, D.G. Ezra, C.M. Dayan, G.J. Kahaly, M. Ludgate, New insights into the pathogenesis and nonsurgical management of Graves orbitopathy. Nat. Rev. Endocrinol. 16(2), 104–116 (2020)

    Article  CAS  Google Scholar 

  4. J. Guo, X. Li, R. Ma, J. Qian, Correlation between uniocular deviation and duction changes following different decompression surgeries in thyroid eye disease. BMC Ophthalmol. 21(1), 134 (2021)

    Article  Google Scholar 

  5. R. Ma, H. Ren, B. Xu, Y. Cheng, L. Gan, R. Zhang, J. Wu, J. Qian, PH20 inhibits TGFβ1-induced differentiation of perimysial orbital fibroblasts via hyaluronan-CD44 pathway in thyroid-associated ophthalmopathy. Invest. Ophthalmol. Vis. Sci. 60(5), 1431–1441 (2019)

    Article  CAS  Google Scholar 

  6. J. Diao, X. Chen, L. Jiang, P. Mou, R. Wei, Transforming growth factor-β1 suppress pentraxin-3 in human orbital fibroblasts. Endocrine 70(1), 78–84 (2020)

    Article  CAS  Google Scholar 

  7. J. Barrio-Barrio, A.L. Sabater, E. Bonet-Farriol, Á. Velázquez-Villoria, J.C. Galofré, Graves’ ophthalmopathy: VISA versus EUGOGO classification. Assess., Manag. J. Ophthalmol. 2015, 249125 (2015)

    Google Scholar 

  8. W. Honglertnapakul, K.M. Cavuoto, C.A. McKeown, H. Capó, Surgical treatment of strabismus in thyroid eye disease: characteristics, dose-response, and outcomes. J. AAPOS 24(2), 72.e1–72.e7 (2020)

    Article  Google Scholar 

  9. M. Baues, A. Dasgupta, J. Ehling, J. Prakash, P. Boor, F. Tacke, F. Kiessling, T. Lammers, Fibrosis imaging: Current concepts and future directions. Adv. Drug Deliv. Rev. 121, 9–26 (2017)

    Article  CAS  Google Scholar 

  10. H. Hu, X.Q. Xu, L. Chen, W. Chen, Q. Wu, H.H. Chen, H. Zhu, H.B. Shi, F.Y. Wu, Predicting the response to glucocorticoid therapy in thyroid-associated ophthalmopathy: mobilizing structural MRI-based quantitative measurements of orbital tissues. Endocrine 70(2), 372–379 (2020)

    Article  CAS  Google Scholar 

  11. C. Feeney, R.K. Lingam, V. Lee, F. Rahman, S. Nagendran, Non-EPI-DWI for detection, disease monitoring, and clinical decision-making in thyroid eye disease. AJNR Am. J. Neuroradiol. 41(8), 1466–1472 (2020)

    Article  CAS  Google Scholar 

  12. F. Tortora, M. Prudente, M. Cirillo, A. Elefante, M.P. Belfiore, F. Romano, S. Cappabianca, C. Carella, S. Cirillo, Diagnostic accuracy of short-time inversion recovery sequence in Graves’ ophthalmopathy before and after prednisone treatment. Neuroradiology 56(5), 353–361 (2014)

    Article  Google Scholar 

  13. R.K. Lingam, P. Mundada, V. Lee, Novel use of non-echo-planar diffusion weighted MRI in monitoring disease activity and treatment response in active Grave’s orbitopathy: An initial observational cohort study. Orbit 37(5), 325–330 (2018)

    Article  Google Scholar 

  14. K. Matsuzawa, S. Izawa, A. Kato, K. Fukaya, K. Matsumoto, T. Okura, D. Miyazaki, M. Kurosaki, S. Fujii, S.I. Taniguchi, M. Kato, K. Yamamoto, Low signal intensities of MRI T1 mapping predict refractory diplopia in Graves’ ophthalmopathy. Clin. Endocrinol. 92(6), 536–544 (2020)

    Article  CAS  Google Scholar 

  15. E. Aherne, K. Chow, J. Carr, Cardiac T1 mapping: Techniques and applications. J. Magn. Reson. Imaging 51(5), 1336–1356 (2020)

    Article  Google Scholar 

  16. R.J. Everett, C.G. Stirrat, S.I. Semple, D.E. Newby, M.R. Dweck, S. Mirsadraee, Assessment of myocardial fibrosis with T1 mapping MRI. Clin. Radiol. 71(8), 768–778 (2016)

    Article  CAS  Google Scholar 

  17. S. Nakamori, K. Dohi, M. Ishida, Y. Goto, K. Imanaka-Yoshida, T. Omori, I. Goto, N. Kumagai, N. Fujimoto, Y. Ichikawa, K. Kitagawa, N. Yamada, H. Sakuma, M. Ito, Native T1 mapping and extracellular volume mapping for the assessment of diffuse myocardial fibrosis in dilated cardiomyopathy. JACC Cardiovasc. Imaging 11(1), 48–59 (2018)

    Article  Google Scholar 

  18. J. Li, H. Liu, C. Zhang, S. Yang, Y. Wang, W. Chen, X. Li, D. Wang, Native T1 mapping compared to ultrasound elastography for staging and monitoring liver fibrosis: An animal study of repeatability, reproducibility, and accuracy. Eur. Radiol. 30(1), 337–345 (2020)

    Article  Google Scholar 

  19. R. Ma, Y. Cheng, L. Gan, X. Zhou, J. Qian, Histopathologic study of extraocular muscles in thyroid-associated ophthalmopathy coexisting with ocular myasthenia gravis: A case report. BMC Ophthalmol. 20(1), 166 (2020)

    Article  Google Scholar 

  20. V.O. Puntmann, G. Carr-White, A. Jabbour, C.Y. Yu, R. Gebker, S. Kelle, R. Hinojar, A. Doltra, N. Varma, N. Child, T. Rogers, G. Suna, E. Arroyo Ucar, B. Goodman, S. Khan, D. Dabir, E. Herrmann, A.M. Zeiher, E. Nagel, International T1 multicentre CMR outcome study. T1-mapping and outcome in nonischemic cardiomyopathy: All-cause mortality and heart failure. JACC Cardiovasc. Imaging 9(1), 40–50 (2016)

    Article  Google Scholar 

  21. D.H. Hoffman, A. Ayoola, D. Nickel, F. Han, H. Chandarana, K.P. Shanbhogue, T1 mapping, T2 mapping and MR elastography of the liver for detection and staging of liver fibrosis. Abdom. Radio. 45(3), 692–700 (2020)

    Article  Google Scholar 

  22. M. Cheng, M.A. Gromski, E.L. Fogel, J.M. DeWitt, A.A. Patel, T. Tirkes, T1 mapping for the diagnosis of early chronic pancreatitis: Correlation with Cambridge classification system. Br. J. Radiol. 94(1121), 20200685 (2021)

    Article  Google Scholar 

  23. L. Chen, W. Chen, H.H. Chen, Q. Wu, X.Q. Xu, H. Hu, F.Y. Wu, Radiological staging of thyroid-associated ophthalmopathy: Comparison of T1 mapping with conventional MRI. Int. J. Endocrinol. 2020, 2575710 (2020)

    PubMed  PubMed Central  Google Scholar 

  24. S.K. Piechnik, M. Jerosch-Herold, Myocardial T1 mapping and extracellular volume quantification: an overview of technical and biological confounders. Int. J. Cardiovasc. Imaging 34(1), 3–14 (2018)

    Article  Google Scholar 

  25. B.J. Winn, R.C. Kersten, Teprotumumab: Interpreting the clinical trials in the context of thyroid eye disease pathogenesis and current therapies. Ophthalmology S0161-6420(21), 00318–3 (2021)

    Google Scholar 

  26. P. Garg, L.C. Saunders, A.J. Swift, J.M. Wild, S. Plein, Role of cardiac T1 mapping and extracellular volume in the assessment of myocardial infarction. Anatol. J. Cardiol. 19(6), 404–411 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. J.A. Luetkens, S. Klein, F. Traeber, F.C. Schmeel, A.M. Sprinkart, D.L.R. Kuetting, W. Block, K. Hittatiya, F.E. Uschner, R. Schierwagen, J. Gieseke, H.H. Schild, J. Trebicka, G.M. Kukuk, Quantitative liver MRI including extracellular volume fraction for non-invasive quantification of liver fibrosis: A prospective proof-of-concept study. Gut 67(3), 593–594 (2018)

    Article  Google Scholar 

  28. A.J. Taylor, M. Salerno, R. Dharmakumar, M. Jerosch-Herold, T1 mapping: Basic techniques and clinical applications. JACC Cardiovasc. Imaging 9(1), 67–81 (2016)

    Article  Google Scholar 

  29. L.K. McLoon, A. Vicente, K.R. Fitzpatrick, M. Lindström, F. Pedrosa, Domellöf, composition, architecture, and functional implications of the connective tissue network of the extraocular muscles. Invest. Ophthalmol. Vis. Sci. 59(1), 322–329 (2018)

    Article  CAS  Google Scholar 

  30. S. Lauer, R.Z. Silkiss, “Stripe sign”- MRI characteristic of extraocular muscles in tendon sparing thyroid eye disease. Orbit (2020) https://doi.org/10.1080/01676830.2020.1782440

  31. M. Zhou, L. Shen, Q. Jiao, L. Ye, Y. Zhou, W. Zhu, W. Wang, S. Wang, Role of magnetic resonance imaging in the assessment of active thyroid-associated ophthalmopathy patients with long disease duration. Endocr. Pract. 25(12), 1268–1278 (2019)

    Article  Google Scholar 

  32. I. Campi, N. Currò, G. Vannucchi, D. Covelli, S. Simonetta, L. Fugazzola, D. Dazzi, L. Pignataro, C. Guastella, E. Lazzaroni, G. Pirola, M. Salvi, Quantification of global ocular motility impairment in Graves’ orbitopathy by measuring eye muscle ductions. Thyroid 31(2), 280–287 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank Dr Rui Zhang (Fudan Eye & ENT Hospital), Dr Yanqing Zhang (Fudan Eye & ENT Hospital), and Dr Yifei Yuan (Fudan Eye & ENT Hospital) for providing control cases.

Authors’ contributions

R.M. and YG conceived and designed the study. R.M., Y.G., L.G., and Z.P. performed the study. Y.G., J.C., and J.G. analyzed the data. J.G. and J.Q. supervised the study. R.M. and Y.G. wrote the paper. All authors revised the final version of the paper. J.Q. is the principal investigator of this work and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Funding

This work was supported by the National Natural Science Foundation of China (grant number 82000940, 81970835, 81800867) and the Natural Science Foundation of Shanghai (grant number 20ZR1409500).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Guo or Jiang Qian.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Approval was obtained from the ethics committee of Fudan Eye & ENT Hospital. The procedures used in this study adhere to the tenets of the Declaration of Helsinki

Consent for publication

Informed consent was obtained from all individual participants included in the study.

Consent to participate

.Patients signed informed consent regarding publishing their data and photographs.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, R., Geng, Y., Gan, L. et al. Quantitative T1 mapping MRI for the assessment of extraocular muscle fibrosis in thyroid-associated ophthalmopathy. Endocrine 75, 456–464 (2022). https://doi.org/10.1007/s12020-021-02873-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-021-02873-0

Keywords

Navigation