Skip to main content

Advertisement

Log in

Chronic inflammation and long-lasting changes in the gastric mucosa after Helicobacter pylori infection involved in gastric cancer

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Helicobacter pylori (H. pylori) infects approximately half of the world’s population, as one of the most common chronic infections. H. pylori infection has been widely recognized as a major risk factor for gastric cancer (GC).

Methods

Eradication treatment is considered to abolish the inflammatory response and prevent progression to GC. However, only 1–3% of H. pylori-infected patients develop GC, whereas GC can occur even after eradicating H. pylori. In addition, the incidence of GC following H. pylori infection is significantly higher compared to the gross incidence induced by all causes, although eradicating H. pylori reduces the risk of developing GC.

Results

Therefore, it is reasonable to hypothesize that H. pylori infection results in changes that persist even after its eradication. Several of these changes may not be reversible within a short time, including the status of inflammation, the dysfunction of immunity and apoptosis, mitochondrial changes, aging and gastric dysbacteriosis.

Conclusion

The present review article aimed to discuss these potential long-lasting changes induced by H. pylori infection that may follow the eradication of H. pylori and contribute to the development of GC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

Cyto C:

Cytochrome c

Apaf-1:

Apoptotic peptidase activating factor 1

MOMP:

Mitochondrial outer membrane permeabilization

TRAIL:

TNF-related apoptosis-inducing ligand

Fasl:

Fas ligand

BID:

BH3-interacting domain death agonist

BAX:

BCL2-associated X

BAK:

BCL2 antagonist/killer 1

MDH:

Malate dehydrogenase

Drp1:

Dynamin-related protein 1

Mfn:

Mitofusin

Opa:

Optic atrophy protein

ETC:

Electron transport chain

mtDNA:

Mitochondrial DNA

mtROS:

Mitochondrial reactive oxygen species

PINK1:

PTEN induced kinase 1

References

  1. Kato S, Shimizu T, Toyoda S, Gold BD, Ida S, Ishige T, et al. The updated JSPGHAN guidelines for the management of Helicobacter pylori infection in childhood. Pediatr Int. 2020;62(12):1315–31. https://doi.org/10.1111/ped.14388.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hooi JKY, Lai WY, Ng WK, Suen MMY, Underwood FE, Tanyingoh D, et al. Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis. Gastroenterology. 2017;153(2):420–9. https://doi.org/10.1053/j.gastro.2017.04.022.

    Article  PubMed  Google Scholar 

  3. Liou JM, Malfertheiner P, Lee YC, Sheu BS, Sugano K, Cheng HC, et al. Screening and eradication of Helicobacter pylori for gastric cancer prevention: the Taipei global consensus. Gut. 2020;69(12):2093–112. https://doi.org/10.1136/gutjnl-2020-322368.

    Article  PubMed  Google Scholar 

  4. Malfertheiner P, Megraud F, O’Morain CA, Gisbert JP, Kuipers EJ, Axon AT, et al. Management of Helicobacter pylori infection-the Maastricht V/Florence Consensus Report. Gut. 2017;66(1):6–30. https://doi.org/10.1136/gutjnl-2016-312288.

    Article  CAS  PubMed  Google Scholar 

  5. Chiang TH, Chang WJ, Chen SL, Yen AM, Fann JC, Chiu SY, et al. Mass eradication of Helicobacter pylori to reduce gastric cancer incidence and mortality: a long-term cohort study on Matsu Islands. Gut. 2021;70(2):243–50. https://doi.org/10.1136/gutjnl-2020-322200.

    Article  CAS  PubMed  Google Scholar 

  6. Choi IJ, Kim CG, Lee JY, Kim YI, Kook MC, Park B, et al. Family history of gastric cancer and Helicobacter pylori treatment. N Engl J Med. 2020;382(5):427–36. https://doi.org/10.1056/NEJMoa1909666.

    Article  PubMed  Google Scholar 

  7. Hwang YJ, Kim N, Lee HS, Lee JB, Choi YJ, Yoon H, et al. Reversibility of atrophic gastritis and intestinal metaplasia after Helicobacter pylori eradication—a prospective study for up to 10 years. Aliment Pharmacol Ther. 2018;47(3):380–90. https://doi.org/10.1111/apt.14424.

    Article  PubMed  Google Scholar 

  8. Tahara T, Shibata T, Horiguchi N, Kawamura T, Okubo M, Ishizuka T, et al. A possible link between gastric mucosal atrophy and gastric cancer after Helicobacter pylori eradication. PLoS ONE. 2016;11(10): e0163700. https://doi.org/10.1371/journal.pone.0163700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Take S, Mizuno M, Ishiki K, Kusumoto C, Imada T, Hamada F, et al. Risk of gastric cancer in the second decade of follow-up after Helicobacter pylori eradication. J Gastroenterol. 2020;55(3):281–8. https://doi.org/10.1007/s00535-019-01639-w.

    Article  CAS  PubMed  Google Scholar 

  10. Maehata Y, Nakamura S, Esaki M, Ikeda F, Moriyama T, Hida R, et al. Characteristics of primary and metachronous gastric cancers discovered after Helicobacter pylori eradication: a multicenter propensity score-matched study. Gut Liver. 2017;11(5):628–34. https://doi.org/10.5009/gnl16357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schreiber S, Konradt M, Groll C, Scheid P, Hanauer G, Werling HO, et al. The spatial orientation of Helicobacter pylori in the gastric mucus. Proc Natl Acad Sci USA. 2004;101(14):5024–9. https://doi.org/10.1073/pnas.0308386101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bugaytsova JA, Björnham O, Chernov YA, Gideonsson P, Henriksson S, Mendez M, et al. Helicobacter pylori adapts to chronic infection and gastric disease via pH-responsive BabA-mediated adherence. Cell Host Microbe. 2017;21(3):376–89. https://doi.org/10.1016/j.chom.2017.02.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fischer W. Assembly and molecular mode of action of the Helicobacter pylori Cag type IV secretion apparatus. FEBS J. 2011;278(8):1203–12. https://doi.org/10.1111/j.1742-4658.2011.08036.x.

    Article  CAS  PubMed  Google Scholar 

  14. Lin AS, Dooyema SDR, Frick-Cheng AE, Harvey ML, Suarez G, Loh JT, et al. Bacterial energetic requirements for Helicobacter pylori Cag type IV secretion system-dependent alterations in gastric epithelial cells. Infect Immun. 2020. https://doi.org/10.1128/iai.00790-19.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Arnold IC, Zhang X, Urban S, Artola-Borán M, Manz MG, Ottemann KM, et al. NLRP3 controls the development of gastrointestinal CD11b(+) dendritic cells in the steady state and during chronic bacterial infection. Cell Rep. 2017;21(13):3860–72. https://doi.org/10.1016/j.celrep.2017.12.015.

    Article  CAS  PubMed  Google Scholar 

  16. Varga MG, Shaffer CL, Sierra JC, Suarez G, Piazuelo MB, Whitaker ME, et al. Pathogenic Helicobacter pylori strains translocate DNA and activate TLR9 via the cancer-associated cag type IV secretion system. Oncogene. 2016;35(48):6262–9. https://doi.org/10.1038/onc.2016.158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xie C, Yi J, Lu J, Nie M, Huang M, Rong J, et al. N-acetylcysteine reduces ROS-mediated oxidative DNA damage and PI3K/Akt pathway activation induced by Helicobacter pylori infection. Oxid Med Cell Longev. 2018;2018:1874985. https://doi.org/10.1155/2018/1874985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Handa O, Naito Y, Yoshikawa T. Helicobacter pylori: a ROS-inducing bacterial species in the stomach. Inflamm Res. 2010;59(12):997–1003. https://doi.org/10.1007/s00011-010-0245-x.

    Article  CAS  PubMed  Google Scholar 

  19. Higashi H, Tsutsumi R, Muto S, Sugiyama T, Azuma T, Asaka M, et al. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science. 2002;295(5555):683–6. https://doi.org/10.1126/science.1067147.

    Article  CAS  PubMed  Google Scholar 

  20. Wang YC, Chen CL, Sheu BS, Yang YJ, Tseng PC, Hsieh CY, et al. Helicobacter pylori infection activates Src homology-2 domain-containing phosphatase 2 to suppress IFN-γ signaling. J Immunol. 2014;193(8):4149–58. https://doi.org/10.4049/jimmunol.1400594.

    Article  CAS  PubMed  Google Scholar 

  21. Hatakeyama M. Helicobacter pylori CagA and gastric cancer: a paradigm for hit-and-run carcinogenesis. Cell Host Microbe. 2014;15(3):306–16. https://doi.org/10.1016/j.chom.2014.02.008.

    Article  CAS  PubMed  Google Scholar 

  22. Nagase L, Murata-Kamiya N, Hatakeyama M. Potentiation of Helicobacter pylori CagA protein virulence through homodimerization. J Biol Chem. 2011;286(38):33622–31. https://doi.org/10.1074/jbc.M111.258673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Park CH, Lee AR, Lee YR, Eun CS, Lee SK, Han DS. Evaluation of gastric microbiome and metagenomic function in patients with intestinal metaplasia using 16S rRNA gene sequencing. Helicobacter. 2019;24(1): e12547. https://doi.org/10.1111/hel.12547.

    Article  CAS  PubMed  Google Scholar 

  24. Ohnishi N, Yuasa H, Tanaka S, Sawa H, Miura M, Matsui A, et al. Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Proc Natl Acad Sci USA. 2008;105(3):1003–8. https://doi.org/10.1073/pnas.0711183105.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cover TL, Blanke SR. Helicobacter pylori VacA, a paradigm for toxin multifunctionality. Nat Rev Microbiol. 2005;3(4):320–32. https://doi.org/10.1038/nrmicro1095.

    Article  CAS  PubMed  Google Scholar 

  26. Oertli M, Noben M, Engler DB, Semper RP, Reuter S, Maxeiner J, et al. Helicobacter pylori γ-glutamyl transpeptidase and vacuolating cytotoxin promote gastric persistence and immune tolerance. Proc Natl Acad Sci USA. 2013;110(8):3047–52. https://doi.org/10.1073/pnas.1211248110.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cover TL, Krishna US, Israel DA, Peek RM Jr. Induction of gastric epithelial cell apoptosis by Helicobacter pylori vacuolating cytotoxin. Can Res. 2003;63(5):951–7.

    CAS  Google Scholar 

  28. Chen P, Guo H, Wu X, Li J, Duan X, Ba Q, et al. Epigenetic silencing of microRNA-204 by Helicobacter pylori augments the NF-κB signaling pathway in gastric cancer development and progression. Carcinogenesis. 2019. https://doi.org/10.1093/carcin/bgz143.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hisatsune J, Yamasaki E, Nakayama M, Shirasaka D, Kurazono H, Katagata Y, et al. Helicobacter pylori VacA enhances prostaglandin E2 production through induction of cyclooxygenase 2 expression via a p38 mitogen-activated protein kinase/activating transcription factor 2 cascade in AZ-521 cells. Infect Immun. 2007;75(9):4472–81. https://doi.org/10.1128/iai.00500-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Saukkonen K, Rintahaka J, Sivula A, Buskens CJ, Van Rees BP, Rio MC, et al. Cyclooxygenase-2 and gastric carcinogenesis. APMIS. 2003;111(10):915–25. https://doi.org/10.1034/j.1600-0463.2003.1111001.x.

    Article  CAS  PubMed  Google Scholar 

  31. Echizen K, Hirose O, Maeda Y, Oshima M. Inflammation in gastric cancer: interplay of the COX-2/prostaglandin E2 and Toll-like receptor/MyD88 pathways. Cancer Sci. 2016;107(4):391–7. https://doi.org/10.1111/cas.12901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wessler S, Krisch LM, Elmer DP, Aberger F. From inflammation to gastric cancer—the importance of Hedgehog/GLI signaling in Helicobacter pylori-induced chronic inflammatory and neoplastic diseases. Cell Commun Signal. 2017;15(1):15. https://doi.org/10.1186/s12964-017-0171-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lin L, Wei H, Yi J, Xie B, Chen J, Zhou C, et al. Chronic CagA-positive Helicobacter pylori infection with MNNG stimulation synergistically induces mesenchymal and cancer stem cell-like properties in gastric mucosal epithelial cells. J Cell Biochem. 2019;120(10):17635–49. https://doi.org/10.1002/jcb.29031.

    Article  CAS  PubMed  Google Scholar 

  34. Udhayakumar G, Jayanthi V, Devaraj N, Devaraj H. Interaction of MUC1 with beta-catenin modulates the Wnt target gene cyclinD1 in H. pylori-induced gastric cancer. Mol Carcinog. 2007;46(9):807–17. https://doi.org/10.1002/mc.20311.

    Article  CAS  PubMed  Google Scholar 

  35. Sokolova O, Naumann M. NF-κB signaling in gastric cancer. Toxins. 2017. https://doi.org/10.3390/toxins9040119.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Khanna P, Chua PJ, Bay BH, Baeg GH. The JAK/STAT signaling cascade in gastric carcinoma (Review). Int J Oncol. 2015;47(5):1617–26. https://doi.org/10.3892/ijo.2015.3160.

    Article  CAS  PubMed  Google Scholar 

  37. Wang K, Karin M. Tumor-elicited inflammation and colorectal cancer. Adv Cancer Res. 2015;128:173–96. https://doi.org/10.1016/bs.acr.2015.04.014.

    Article  CAS  PubMed  Google Scholar 

  38. Garcia HG, Berrocal A, Kim YJ, Martini G, Zhao J. Lighting up the central dogma for predictive developmental biology. Curr Top Dev Biol. 2020;137:1–35. https://doi.org/10.1016/bs.ctdb.2019.10.010.

    Article  CAS  PubMed  Google Scholar 

  39. Li X, Pasche B, Zhang W, Chen K. Association of MUC16 mutation with tumor mutation load and outcomes in patients with gastric cancer. JAMA Oncol. 2018;4(12):1691–8. https://doi.org/10.1001/jamaoncol.2018.2805.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tahara T, Arisawa T. DNA methylation as a molecular biomarker in gastric cancer. Epigenomics. 2015;7(3):475–86. https://doi.org/10.2217/epi.15.4.

    Article  CAS  PubMed  Google Scholar 

  41. Van Cutsem E, Bang YJ, Feng-Yi F, Xu JM, Lee KW, Jiao SC, et al. HER2 screening data from ToGA: targeting HER2 in gastric and gastroesophageal junction cancer. Gastric Cancer. 2015;18(3):476–84. https://doi.org/10.1007/s10120-014-0402-y.

    Article  CAS  PubMed  Google Scholar 

  42. Kim HJ, Kim N, Kim HW, Park JH, Shin CM, Lee DH. Promising aberrant DNA methylation marker to predict gastric cancer development in individuals with family history and long-term effects of H. pylori eradication on DNA methylation. Gastric Cancer. 2021;24(2):302–13. https://doi.org/10.1007/s10120-020-01117-w.

    Article  CAS  PubMed  Google Scholar 

  43. Tahara S, Tahara T, Horiguchi N, Kato T, Shinkai Y, Yamashita H, et al. DNA methylation accumulation in gastric mucosa adjacent to cancer after Helicobacter pylori eradication. Int J Cancer. 2019;144(1):80–8. https://doi.org/10.1002/ijc.31667.

    Article  CAS  PubMed  Google Scholar 

  44. Tahara S, Tahara T, Tuskamoto T, Horiguchi N, Kawamura T, Okubo M, et al. Morphologic characterization of residual DNA methylation in the gastric mucosa after Helicobacter pylori eradication. Cancer Med. 2017;6(7):1730–7. https://doi.org/10.1002/cam4.1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang J, Song H, Cao K, Song J, Zhou J. Comprehensive analysis of Helicobacter pylori infection-associated diseases based on miRNA-mRNA interaction network. Brief Bioinform. 2019;20(4):1492–501. https://doi.org/10.1093/bib/bby018.

    Article  CAS  PubMed  Google Scholar 

  46. Rossi AF, Cadamuro AC, Biselli-Périco JM, Leite KR, Severino FE, Reis PP, et al. Interaction between inflammatory mediators and miRNAs in Helicobacter pylori infection. Cell Microbiol. 2016;18(10):1444–58. https://doi.org/10.1111/cmi.12587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li S, Liang X, Ma L, Shen L, Li T, Zheng L, et al. MiR-22 sustains NLRP3 expression and attenuates H. pylori-induced gastric carcinogenesis. Oncogene. 2018;37(7):884–96. https://doi.org/10.1038/onc.2017.381.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang J, Wei J, Wang Z, Feng Y, Wei Z, Hou X, et al. Transcriptome hallmarks in Helicobacter pylori infection influence gastric cancer and MALT lymphoma. Epigenomics. 2020;12(8):661–71. https://doi.org/10.2217/epi-2019-0152.

    Article  CAS  PubMed  Google Scholar 

  49. Perri F, Cotugno R, Piepoli A, Merla A, Quitadamo M, Gentile A, et al. Aberrant DNA methylation in non-neoplastic gastric mucosa of H. Pylori infected patients and effect of eradication. Am J Gastroenterol. 2007;102(7):1361–71. https://doi.org/10.1111/j.1572-0241.2007.01284.x.

    Article  CAS  PubMed  Google Scholar 

  50. Hagen SJ, Ang LH, Zheng Y, Karahan SN, Wu J, Wang YE, et al. Loss of tight junction protein claudin 18 promotes progressive neoplasia development in mouse stomach. Gastroenterology. 2018;155(6):1852–67. https://doi.org/10.1053/j.gastro.2018.08.041.

    Article  CAS  PubMed  Google Scholar 

  51. Rudnicka K, Backert S, Chmiela M. Genetic polymorphisms in inflammatory and other regulators in gastric cancer: risks and clinical consequences. Curr Top Microbiol Immunol. 2019;421:53–76. https://doi.org/10.1007/978-3-030-15138-6_3.

    Article  CAS  PubMed  Google Scholar 

  52. Jin G, Lv J, Yang M, Wang M, Zhu M, Wang T, et al. Genetic risk, incident gastric cancer, and healthy lifestyle: a meta-analysis of genome-wide association studies and prospective cohort study. Lancet Oncol. 2020;21(10):1378–86. https://doi.org/10.1016/s1470-2045(20)30460-5.

    Article  CAS  PubMed  Google Scholar 

  53. Tongtawee T, Bartpho T, Kaewpitoon S, Kaewpitoon N, Dechsukhum C, Leeanansaksiri W, et al. Genetic polymorphisms in TLR1, TLR2, TLR4, and TLR10 of Helicobacter pylori-associated gastritis: a prospective cross-sectional study in Thailand. Eur J Cancer Prev. 2018;27(2):118–23. https://doi.org/10.1097/cej.0000000000000347.

    Article  CAS  PubMed  Google Scholar 

  54. Luo MX, Long BB, Li F, Zhang C, Pan MT, Huang YQ, et al. Roles of Cyclooxygenase-2 gene -765G > C (rs20417) and -1195G > A (rs689466) polymorphisms in gastric cancer: a systematic review and meta-analysis. Gene. 2019;685:125–35. https://doi.org/10.1016/j.gene.2018.10.077.

    Article  CAS  PubMed  Google Scholar 

  55. Yuan X, Zhou Y, Wang W, Li J, Xie G, Zhao Y, et al. Activation of TLR4 signaling promotes gastric cancer progression by inducing mitochondrial ROS production. Cell Death Dis. 2013;4(9): e794. https://doi.org/10.1038/cddis.2013.334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Blaser MJ, Atherton JC. Helicobacter pylori persistence: biology and disease. J Clin Investig. 2004;113(3):321–33. https://doi.org/10.1172/jci20925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Käbisch R, Semper RP, Wüstner S, Gerhard M, Mejías-Luque R. Helicobacter pylori γ-glutamyltranspeptidase induces tolerogenic human dendritic cells by activation of glutamate receptors. J Immunol. 2016;196(10):4246–52. https://doi.org/10.4049/jimmunol.1501062.

    Article  CAS  PubMed  Google Scholar 

  58. Buti L, Spooner E, Van der Veen AG, Rappuoli R, Covacci A, Ploegh HL. Helicobacter pylori cytotoxin-associated gene A (CagA) subverts the apoptosis-stimulating protein of p53 (ASPP2) tumor suppressor pathway of the host. Proc Natl Acad Sci USA. 2011;108(22):9238–43. https://doi.org/10.1073/pnas.1106200108.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Tsang YH, Lamb A, Romero-Gallo J, Huang B, Ito K, Peek RM Jr, et al. Helicobacter pylori CagA targets gastric tumor suppressor RUNX3 for proteasome-mediated degradation. Oncogene. 2010;29(41):5643–50. https://doi.org/10.1038/onc.2010.304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sayers TJ. Targeting the extrinsic apoptosis signaling pathway for cancer therapy. Cancer Immunol Immunother. 2011;60(8):1173–80. https://doi.org/10.1007/s00262-011-1008-4.

    Article  CAS  PubMed  Google Scholar 

  61. Hata AN, Engelman JA, Faber AC. The BCL2 family: key mediators of the apoptotic response to targeted anticancer therapeutics. Cancer Discov. 2015;5(5):475–87. https://doi.org/10.1158/2159-8290.cd-15-0011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bratton SB, Salvesen GS. Regulation of the Apaf-1-caspase-9 apoptosome. J Cell Sci. 2010;123(Pt 19):3209–14. https://doi.org/10.1242/jcs.073643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tummers B, Green DR. Caspase-8: regulating life and death. Immunol Rev. 2017;277(1):76–89. https://doi.org/10.1111/imr.12541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. van der Woude CJ, Kleibeuker JH, Jansen PL, Moshage H. Chronic inflammation, apoptosis and (pre-)malignant lesions in the gastro-intestinal tract. Apoptosis. 2004;9(2):123–30. https://doi.org/10.1023/b:appt.0000018794.26438.22.

    Article  PubMed  Google Scholar 

  65. Naderer T, Fulcher MC. Targeting apoptosis pathways in infections. J Leukoc Biol. 2018;103(2):275–85. https://doi.org/10.1189/jlb.4mr0717-286r.

    Article  CAS  PubMed  Google Scholar 

  66. Dang Y, Zhang Y, Xu L, Zhou X, Gu Y, Yu J, et al. PUMA-mediated epithelial cell apoptosis promotes Helicobacter pylori infection-mediated gastritis. Cell Death Dis. 2020;11(2):139. https://doi.org/10.1038/s41419-020-2339-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Posselt G, Wiesauer M, Chichirau BE, Engler D, Krisch LM, Gadermaier G, et al. Helicobacter pylori-controlled c-Abl localization promotes cell migration and limits apoptosis. Cell Commun Signal. 2019;17(1):10. https://doi.org/10.1186/s12964-019-0323-9.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Xia HH, Talley NJ. Apoptosis in gastric epithelium induced by Helicobacter pylori infection: implications in gastric carcinogenesis. Am J Gastroenterol. 2001;96(1):16–26. https://doi.org/10.1111/j.1572-0241.2001.03447.x.

    Article  CAS  PubMed  Google Scholar 

  69. D’Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019;43(6):582–92. https://doi.org/10.1002/cbin.11137.

    Article  PubMed  Google Scholar 

  70. Liu CJ, Wang YK, Kuo FC, Hsu WH, Yu FJ, Hsieh S, et al. Helicobacter pylori infection-induced hepatoma-derived growth factor regulates the differentiation of human mesenchymal stem cells to myofibroblast-like cells. Cancers. 2018. https://doi.org/10.3390/cancers10120479.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Badrinath N, Yoo SY. Mitochondria in cancer: in the aspects of tumorigenesis and targeted therapy. Carcinogenesis. 2018;39(12):1419–30. https://doi.org/10.1093/carcin/bgy148.

    Article  CAS  PubMed  Google Scholar 

  72. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495–516. https://doi.org/10.1080/01926230701320337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vringer E, Tait SWG. Mitochondria and inflammation: cell death heats up. Front Cell Dev Biol. 2019;7:100. https://doi.org/10.3389/fcell.2019.00100.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Berthenet K, Weber K, Ichim G. Sometimes even apoptosis fails: implications for cancer. Mol Cell Oncol. 2020;7(6):1797430. https://doi.org/10.1080/23723556.2020.1797430.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Larsen BD, Sørensen CS. The caspase-activated DNase: apoptosis and beyond. FEBS J. 2017;284(8):1160–70. https://doi.org/10.1111/febs.13970.

    Article  CAS  PubMed  Google Scholar 

  76. Brokatzky D, Dörflinger B, Haimovici A, Weber A, Kirschnek S, Vier J, et al. A non-death function of the mitochondrial apoptosis apparatus in immunity. EMBO J. 2019. https://doi.org/10.15252/embj.2018100907.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ichim G, Lopez J, Ahmed SU, Muthalagu N, Giampazolias E, Delgado ME, et al. Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death. Mol Cell. 2015;57(5):860–72. https://doi.org/10.1016/j.molcel.2015.01.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ichim G, Tait SW. A fate worse than death: apoptosis as an oncogenic process. Nat Rev Cancer. 2016;16(8):539–48. https://doi.org/10.1038/nrc.2016.58.

    Article  CAS  PubMed  Google Scholar 

  79. Riley JS, Tait SW. Mitochondria and pathogen immunity: from killer to firestarter. EMBO J. 2019. https://doi.org/10.15252/embj.2019102325.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 2013;20(1):31–42. https://doi.org/10.1038/cdd.2012.81.

    Article  CAS  PubMed  Google Scholar 

  81. Dorn GW 2nd, Kitsis RN. The mitochondrial dynamism-mitophagy-cell death interactome: multiple roles performed by members of a mitochondrial molecular ensemble. Circ Res. 2015;116(1):167–82. https://doi.org/10.1161/circresaha.116.303554.

    Article  CAS  PubMed  Google Scholar 

  82. Mishra P, Chan DC. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat Rev Mol Cell Biol. 2014;15(10):634–46. https://doi.org/10.1038/nrm3877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Peña-Blanco A, García-Sáez AJ. Bax, Bak and beyond—mitochondrial performance in apoptosis. FEBS J. 2018;285(3):416–31. https://doi.org/10.1111/febs.14186.

    Article  CAS  PubMed  Google Scholar 

  84. Jeong SY, Seol DW. The role of mitochondria in apoptosis. BMB Rep. 2008;41(1):11–22. https://doi.org/10.5483/bmbrep.2008.41.1.011.

    Article  CAS  PubMed  Google Scholar 

  85. Buck MD, O’Sullivan D, Klein Geltink RI, Curtis JD, Chang CH, Sanin DE, et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell. 2016;166(1):63–76. https://doi.org/10.1016/j.cell.2016.05.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yang H, Li Y, Hu B. Potential role of mitochondria in gastric cancer detection: fission and glycolysis. Oncol Lett. 2021;21(6):439. https://doi.org/10.3892/ol.2021.12700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Milani M, Byrne DP, Greaves G, Butterworth M, Cohen GM, Eyers PA, et al. DRP-1 is required for BH3 mimetic-mediated mitochondrial fragmentation and apoptosis. Cell Death Dis. 2017;8(1): e2552. https://doi.org/10.1038/cddis.2016.485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Maycotte P, Marín-Hernández A, Goyri-Aguirre M, Anaya-Ruiz M, Reyes-Leyva J, Cortés-Hernández P. Mitochondrial dynamics and cancer. Tumour Biol. 2017;39(5):1010428317698391. https://doi.org/10.1177/1010428317698391.

    Article  CAS  PubMed  Google Scholar 

  89. Xie LL, Shi F, Tan Z, Li Y, Bode AM, Cao Y. Mitochondrial network structure homeostasis and cell death. Cancer Sci. 2018;109(12):3686–94. https://doi.org/10.1111/cas.13830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Karbowski M, Lee YJ, Gaume B, Jeong SY, Frank S, Nechushtan A, et al. Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J Cell Biol. 2002;159(6):931–8. https://doi.org/10.1083/jcb.200209124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gruno M, Peet N, Tein A, Salupere R, Sirotkina M, Valle J, et al. Atrophic gastritis: deficient complex I of the respiratory chain in the mitochondria of corpus mucosal cells. J Gastroenterol. 2008;43(10):780–8. https://doi.org/10.1007/s00535-008-2231-4.

    Article  CAS  PubMed  Google Scholar 

  92. Yan H, Qiu C, Sun W, Gu M, Xiao F, Zou J, et al. Yap regulates gastric cancer survival and migration via SIRT1/Mfn2/mitophagy. Oncol Rep. 2018;39(4):1671–81. https://doi.org/10.3892/or.2018.6252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jo MJ, Jeong S, Yun HK, Kim DY, Kim BR, Kim JL, et al. Genipin induces mitochondrial dysfunction and apoptosis via downregulation of Stat3/mcl-1 pathway in gastric cancer. BMC Cancer. 2019;19(1):739. https://doi.org/10.1186/s12885-019-5957-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Huang S, Guo Y, Li Z, Zhang Y, Zhou T, You W, et al. A systematic review of metabolomic profiling of gastric cancer and esophageal cancer. Cancer Biol Med. 2020;17(1):181–98. https://doi.org/10.20892/j.issn.2095-3941.2019.0348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Xiao S, Zhou L. Gastric cancer: Metabolic and metabolomics perspectives (Review). Int J Oncol. 2017;51(1):5–17. https://doi.org/10.3892/ijo.2017.4000.

    Article  CAS  PubMed  Google Scholar 

  96. Machado AM, Desler C, Bøggild S, Strickertsson JA, Friis-Hansen L, Figueiredo C, et al. Helicobacter pylori infection affects mitochondrial function and DNA repair, thus, mediating genetic instability in gastric cells. Mech Ageing Dev. 2013;134(10):460–6. https://doi.org/10.1016/j.mad.2013.08.004.

    Article  CAS  PubMed  Google Scholar 

  97. Yang L, Zhang W, Wang Y, Zou T, Zhang B, Xu Y, et al. Hypoxia-induced miR-214 expression promotes tumour cell proliferation and migration by enhancing the Warburg effect in gastric carcinoma cells. Cancer Lett. 2018;414:44–56. https://doi.org/10.1016/j.canlet.2017.11.007.

    Article  CAS  PubMed  Google Scholar 

  98. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4(11):891–9. https://doi.org/10.1038/nrc1478.

    Article  CAS  PubMed  Google Scholar 

  99. Choi SY, Collins CC, Gout PW, Wang Y. Cancer-generated lactic acid: a regulatory, immunosuppressive metabolite? J Pathol. 2013;230(4):350–5. https://doi.org/10.1002/path.4218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM, et al. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci USA. 2010;107(5):2037–42. https://doi.org/10.1073/pnas.0914433107.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Yang H, Du L, Zhang Z. Potential biomarkers in septic shock besides lactate. Exp Biol Med (Maywood). 2020;245(12):1066–72. https://doi.org/10.1177/1535370220919076.

    Article  CAS  Google Scholar 

  102. de Bari L, Atlante A. Including the mitochondrial metabolism of L-lactate in cancer metabolic reprogramming. Cell Mol Life Sci. 2018;75(15):2763–76. https://doi.org/10.1007/s00018-018-2831-y.

    Article  CAS  PubMed  Google Scholar 

  103. Kim SY. Cancer energy metabolism: shutting power off cancer factory. Biomol Ther. 2018;26(1):39–44. https://doi.org/10.4062/biomolther.2017.184.

    Article  CAS  Google Scholar 

  104. Faubert B, Li KY, Cai L, Hensley CT, Kim J, Zacharias LG, et al. Lactate metabolism in human lung tumors. Cell. 2017;171(2):358-71.e9. https://doi.org/10.1016/j.cell.2017.09.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kaji K, Hashiba A, Uotani C, Yamaguchi Y, Ueno T, Ohno K, et al. Grading of atrophic gastritis is useful for risk stratification in endoscopic screening for gastric cancer. Am J Gastroenterol. 2019;114(1):71–9. https://doi.org/10.1038/s41395-018-0259-5.

    Article  PubMed  Google Scholar 

  106. Zhang X, Meng X, Chen Y, Leng SX, Zhang H. The biology of aging and cancer: frailty, inflammation, and immunity. Cancer J. 2017;23(4):201–5. https://doi.org/10.1097/ppo.0000000000000270.

    Article  PubMed  Google Scholar 

  107. Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120(4):483–95. https://doi.org/10.1016/j.cell.2005.02.001.

    Article  CAS  PubMed  Google Scholar 

  108. Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science. 2012;337(6098):1062–5. https://doi.org/10.1126/science.1219855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rubinsztein DC, Mariño G, Kroemer G. Autophagy and aging. Cell. 2011;146(5):682–95. https://doi.org/10.1016/j.cell.2011.07.030.

    Article  CAS  PubMed  Google Scholar 

  110. Kauppila TES, Kauppila JHK, Larsson NG. Mammalian mitochondria and aging: an update. Cell Metab. 2017;25(1):57–71. https://doi.org/10.1016/j.cmet.2016.09.017.

    Article  CAS  PubMed  Google Scholar 

  111. Bose S, French S, Evans FJ, Joubert F, Balaban RS. Metabolic network control of oxidative phosphorylation: multiple roles of inorganic phosphate. J Biol Chem. 2003;278(40):39155–65. https://doi.org/10.1074/jbc.M306409200.

    Article  CAS  PubMed  Google Scholar 

  112. Catic A. Cellular metabolism and aging. Prog Mol Biol Transl Sci. 2018;155:85–107. https://doi.org/10.1016/bs.pmbts.2017.12.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci. 2014;69(Suppl 1):S4-9. https://doi.org/10.1093/gerona/glu057.

    Article  PubMed  Google Scholar 

  114. Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25(12):1822–32. https://doi.org/10.1038/s41591-019-0675-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Vaiserman AM, Koliada AK, Marotta F. Gut microbiota: a player in aging and a target for anti-aging intervention. Ageing Res Rev. 2017;35:36–45. https://doi.org/10.1016/j.arr.2017.01.001.

    Article  CAS  PubMed  Google Scholar 

  116. Delgado S, Cabrera-Rubio R, Mira A, Suárez A, Mayo B. Microbiological survey of the human gastric ecosystem using culturing and pyrosequencing methods. Microb Ecol. 2013;65(3):763–72. https://doi.org/10.1007/s00248-013-0192-5.

    Article  CAS  PubMed  Google Scholar 

  117. Chen CC, Liou JM, Lee YC, Hong TC, El-Omar EM, Wu MS. The interplay between Helicobacter pylori and gastrointestinal microbiota. Gut Microbes. 2021;13(1):1–22. https://doi.org/10.1080/19490976.2021.1909459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Frost F, Kacprowski T, Rühlemann M, Bang C, Franke A, Zimmermann K, et al. Helicobacter pylori infection associates with fecal microbiota composition and diversity. Sci Rep. 2019;9(1):20100. https://doi.org/10.1038/s41598-019-56631-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Pereira-Marques J, Ferreira RM, Pinto-Ribeiro I, Figueiredo C. Helicobacter pylori infection, the gastric microbiome and gastric cancer. Adv Exp Med Biol. 2019;1149:195–210. https://doi.org/10.1007/5584_2019_366.

    Article  CAS  PubMed  Google Scholar 

  120. Li TH, Qin Y, Sham PC, Lau KS, Chu KM, Leung WK. Alterations in gastric microbiota After H. Pylori eradication and in different histological stages of gastric carcinogenesis. Sci Rep. 2017;7:44935. https://doi.org/10.1038/srep44935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Maldonado-Contreras A, Goldfarb KC, Godoy-Vitorino F, Karaoz U, Contreras M, Blaser MJ, et al. Structure of the human gastric bacterial community in relation to Helicobacter pylori status. ISME J. 2011;5(4):574–9. https://doi.org/10.1038/ismej.2010.149.

    Article  CAS  PubMed  Google Scholar 

  122. Zhao Y, Gao X, Guo J, Yu D, Xiao Y, Wang H, et al. Helicobacter pylori infection alters gastric and tongue coating microbial communities. Helicobacter. 2019;24(2): e12567. https://doi.org/10.1111/hel.12567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. He C, Peng C, Wang H, Ouyang Y, Zhu Z, Shu X, et al. The eradication of Helicobacter pylori restores rather than disturbs the gastrointestinal microbiota in asymptomatic young adults. Helicobacter. 2019;24(4): e12590. https://doi.org/10.1111/hel.12590.

    Article  CAS  PubMed  Google Scholar 

  124. Shin CM, Kim N, Park JH, Lee DH. Changes in gastric corpus microbiota with age and after Helicobacter pylori eradication: a long-term follow-up study. Front Microbiol. 2020;11: 621879. https://doi.org/10.3389/fmicb.2020.621879.

    Article  PubMed  Google Scholar 

  125. Heimesaat MM, Fischer A, Plickert R, Wiedemann T, Loddenkemper C, Göbel UB, et al. Helicobacter pylori induced gastric immunopathology is associated with distinct microbiota changes in the large intestines of long-term infected Mongolian gerbils. PLoS ONE. 2014;9(6): e100362. https://doi.org/10.1371/journal.pone.0100362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Coker OO, Dai Z, Nie Y, Zhao G, Cao L, Nakatsu G, et al. Mucosal microbiome dysbiosis in gastric carcinogenesis. Gut. 2018;67(6):1024–32. https://doi.org/10.1136/gutjnl-2017-314281.

    Article  CAS  PubMed  Google Scholar 

  127. Arita S, Inagaki-Ohara K. High-fat-diet-induced modulations of leptin signaling and gastric microbiota drive precancerous lesions in the stomach. Nutrition. 2019;67–68: 110556. https://doi.org/10.1016/j.nut.2019.110556.

    Article  CAS  PubMed  Google Scholar 

  128. Sung JJY, Coker OO, Chu E, Szeto CH, Luk STY, Lau HCH, et al. Gastric microbes associated with gastric inflammation, atrophy and intestinal metaplasia 1 year after Helicobacter pylori eradication. Gut. 2020;69(9):1572–80. https://doi.org/10.1136/gutjnl-2019-319826.

    Article  CAS  PubMed  Google Scholar 

  129. Ferreira RM, Pereira-Marques J, Pinto-Ribeiro I, Costa JL, Carneiro F, Machado JC, et al. Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota. Gut. 2018;67(2):226–36. https://doi.org/10.1136/gutjnl-2017-314205.

    Article  CAS  PubMed  Google Scholar 

  130. Yu G, Torres J, Hu N, Medrano-Guzman R, Herrera-Goepfert R, Humphrys MS, et al. Molecular characterization of the human stomach microbiota in gastric cancer patients. Front Cell Infect Microbiol. 2017;7:302. https://doi.org/10.3389/fcimb.2017.00302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lofgren JL, Whary MT, Ge Z, Muthupalani S, Taylor NS, Mobley M, et al. Lack of commensal flora in Helicobacter pylori-infected INS-GAS mice reduces gastritis and delays intraepithelial neoplasia. Gastroenterology. 2011;140(1):210–20. https://doi.org/10.1053/j.gastro.2010.09.048.

    Article  PubMed  Google Scholar 

  132. Lertpiriyapong K, Whary MT, Muthupalani S, Lofgren JL, Gamazon ER, Feng Y, et al. Gastric colonisation with a restricted commensal microbiota replicates the promotion of neoplastic lesions by diverse intestinal microbiota in the Helicobacter pylori INS-GAS mouse model of gastric carcinogenesis. Gut. 2014;63(1):54–63. https://doi.org/10.1136/gutjnl-2013-305178.

    Article  CAS  PubMed  Google Scholar 

  133. Gao JJ, Zhang Y, Gerhard M, Mejias-Luque R, Zhang L, Vieth M, et al. Association between gut microbiota and Helicobacter pylori-related gastric lesions in a high-risk population of gastric cancer. Front Cell Infect Microbiol. 2018;8:202. https://doi.org/10.3389/fcimb.2018.00202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhang S, Lee DS, Morrissey R, Aponte-Pieras JR, Rogers AB, Moss SF. Early or late antibiotic intervention prevents Helicobacter pylori-induced gastric cancer in a mouse model. Cancer Lett. 2014;355(1):106–12. https://doi.org/10.1016/j.canlet.2014.09.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wang L, Zhou J, Xin Y, Geng C, Tian Z, Yu X, et al. Bacterial overgrowth and diversification of microbiota in gastric cancer. Eur J Gastroenterol Hepatol. 2016;28(3):261–6. https://doi.org/10.1097/meg.0000000000000542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Recavarren-Arce S, León-Barúa R, Cok J, Berendson R, Gilman RH, Ramírez-Ramos A, et al. Helicobacter pylori and progressive gastric pathology that predisposes to gastric cancer. Scand J Gastroenterol Suppl. 1991;181:51–7. https://doi.org/10.3109/00365529109093208.

    Article  CAS  PubMed  Google Scholar 

  137. Castaño-Rodríguez N, Goh KL, Fock KM, Mitchell HM, Kaakoush NO. Dysbiosis of the microbiome in gastric carcinogenesis. Sci Rep. 2017;7(1):15957. https://doi.org/10.1038/s41598-017-16289-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Parsons BN, Ijaz UZ, D’Amore R, Burkitt MD, Eccles R, Lenzi L, et al. Comparison of the human gastric microbiota in hypochlorhydric states arising as a result of Helicobacter pylori-induced atrophic gastritis, autoimmune atrophic gastritis and proton pump inhibitor use. PLoS Pathog. 2017;13(11): e1006653. https://doi.org/10.1371/journal.ppat.1006653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The present study was supported by the 1·3·5 project for disciplines of excellence Clinical Research Incubation Project, West China Hospital, Sichuan University, China (Grant No. 20HXFH016).

Author information

Authors and Affiliations

Authors

Contributions

HY contributed to the design and drafting of the manuscript. BW contributed to revising of the manuscript. BH contributed to design and revising of the manuscript.

Corresponding author

Correspondence to Bing Hu.

Ethics declarations

Conflict of interest

Author Hang Yang declares that she has no conflict of interest. Author Bin Wei declares that he has no conflict of interest. Author Bing Hu declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Responsible Editor: H. Wang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Wei, B. & Hu, B. Chronic inflammation and long-lasting changes in the gastric mucosa after Helicobacter pylori infection involved in gastric cancer. Inflamm. Res. 70, 1015–1026 (2021). https://doi.org/10.1007/s00011-021-01501-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-021-01501-x

Keywords

Navigation