Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chains of evidence from correlations to causal molecules in microbiome-linked diseases

Abstract

Human-associated microorganisms play a vital role in human health, and microbial imbalance has been linked to a wide range of disease states. In this Review, we explore recent efforts to progress from correlative studies that identify microorganisms associated with human disease to experiments that establish causal relationships between microbial products and host phenotypes. We propose that successful efforts to uncover phenotypes often follow a chain of evidence that proceeds from (1) association studies; to (2) observations in germ-free animals and antibiotic-treated animals and humans; to (3) fecal microbiota transplants (FMTs); to (4) identification of strains; and then (5) molecules that elicit a phenotype. Using this experimental ‘funnel’ as our guide, we explore how the microbiota contributes to metabolic disorders and hypertension, infections, and neurological conditions. We discuss the potential to use FMTs and microbiota-inspired therapies to treat human disease as well as the limitations of these approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evidence progression from correlation to causation in human microbiome research.
Fig. 2: FMTs transfer metabolic disorder phenotypes and affect metabolic state.
Fig. 3: Development of microbial metabolite analogs as therapies for disease.
Fig. 4: FMTs transfer neurological phenotypes and affect neurological state.

Similar content being viewed by others

References

  1. Nicolas, G. R. & Chang, P. V. Deciphering the chemical lexicon of host–gut microbiota interactions. Trends Pharmacol. Sci. 40, 430–445 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Luczynski, P. et al. Growing up in a bubble: using germ-free animals to assess the influence of the gut microbiota on brain and behavior. Int. J. Neuropsychopharmacol. 19, pyw020 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Kennedy, E. A., King, K. Y. & Baldridge, M. T. Mouse microbiota models: comparing germ-free mice and antibiotics treatment as tools for modifying gut bacteria. Front. Physiol. 9, 1534 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bramante, C. T., Lee, C. J. & Gudzune, K. A. Treatment of obesity in patients with diabetes. Diabetes Spectr. 30, 237–243 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Schnurr, T. M. et al. Obesity, unfavourable lifestyle and genetic risk of type 2 diabetes: a case-cohort study. Diabetologia 63, 1324–1332 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Jiang, S. Z., Lu, W., Zong, X. F., Ruan, H. Y. & Liu, Y. Obesity and hypertension. Exp. Ther. Med. 12, 2395–2399 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Grigorescu, I. & Dumitrascu, D. L. Implication of gut microbiota in diabetes mellitus and obesity. Acta Endocrinol. 12, 206–214 (2016).

    CAS  Google Scholar 

  8. Castaner, O. et al. The gut microbiome profile in obesity: a systematic review. Int. J. Endocrinol. 2018, 4095789 (2018).

    PubMed  PubMed Central  Google Scholar 

  9. Dao, M. C. et al. Akkermansia muciniphila abundance is lower in severe obesity, but its increased level after bariatric surgery is not associated with metabolic health improvement. Am. J. Physiol. Endocrinol. Metab. 317, E446–E459 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Dao, M. C. et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65, 426–436 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Yan, Q. et al. Alterations of the gut microbiome in hypertension. Front. Cell Infect. Microbiol. 7, 381 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Li, J. et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 5, 14 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Liu, J. et al. Correlation analysis of intestinal flora with hypertension. Exp. Ther. Med. 16, 2325–2330 (2018).

    PubMed  PubMed Central  Google Scholar 

  14. Scott, F. I. et al. Administration of antibiotics to children before age 2 years increases risk for childhood obesity. Gastroenterology 151, 120–129 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Hwang, I. et al. Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet-induced obesity. FASEB J. 29, 2397–2411 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Miao, Z. et al. Antibiotics can cause weight loss by impairing gut microbiota in mice and the potent benefits of lactobacilli. Biosci. Biotechnol. Biochem. 84, 411–420 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Hooper, L. V. Bacterial contributions to mammalian gut development. Trends Microbiol. 12, 129–134 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Davis, C. D. The gut microbiome and its role in obesity. Nutr. Today 51, 167–174 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Honour, J. W., Borriello, S. P., Ganten, U. & Honour, P. Antibiotics attenuate experimental hypertension in rats. J. Endocrinol. 105, 347–350 (1985).

    Article  CAS  PubMed  Google Scholar 

  20. Sanada, T. J. et al. Gut microbiota modification suppresses the development of pulmonary arterial hypertension in an SU5416/hypoxia rat model. Pulm. Circ. 10, 2045894020929147 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Galla, S. et al. Disparate effects of antibiotics on hypertension. Physiol. Genomics 50, 837–845 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013).

    Article  PubMed  CAS  Google Scholar 

  23. Wang, S. et al. Gut microbiota mediates the anti-obesity effect of calorie restriction in mice. Sci. Rep. 8, 13037 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Lai, Z. L. et al. Fecal microbiota transplantation confers beneficial metabolic effects of diet and exercise on diet-induced obese mice. Sci. Rep. 8, 15625 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. de Groot, P. et al. Donor metabolic characteristics drive effects of faecal microbiota transplantation on recipient insulin sensitivity, energy expenditure and intestinal transit time. Gut 69, 502–512 (2020).

    Article  PubMed  CAS  Google Scholar 

  26. Wu, H. et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 23, 850–858 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, H. et al. Promising treatment for type 2 diabetes: fecal microbiota transplantation reverses insulin resistance and impaired islets. Front. Cell Infect. Microbiol. 9, 455 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Kootte, R. S. et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab. 26, 611–619 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Vrieze, A. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143, 913–6 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, Z. et al. Impact of fecal microbiota transplantation on obesity and metabolic syndrome—a systematic review. Nutrients 11, 2291 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  31. Durgan, D. J. et al. Role of the gut microbiome in obstructive sleep apnea-induced hypertension. Hypertension 67, 469–474 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Adnan, S. et al. Alterations in the gut microbiota can elicit hypertension in rats. Physiol. Genomics 49, 96–104 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Ridlon, J. M., Kang, D.-J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47, 241–259 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Broeders, E. P. et al. The bile acid chenodeoxycholic acid increases human brown adipose tissue activity. Cell Metab. 22, 418–426 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Kars, M. et al. Tauroursodeoxycholic acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women. Diabetes 59, 1899–1905 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, H. M. et al. Beneficial effect of farnesoid X receptor activation on metabolism in a diabetic rat model. Mol. Med. Rep. 13, 2135–2142 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Sun, L. et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat. Med. 24, 1919–1929 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schittenhelm, B. et al. Role of FXR in beta-cells of lean and obese mice. Endocrinology 156, 1263–1271 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Backhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Liu, Y. et al. Gut microbiome fermentation determines the efficacy of exercise for diabetes prevention. Cell Metab. 31, 77–91 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. La Rosa, S. L. et al. The human gut Firmicute Roseburia intestinalis is a primary degrader of dietary β-mannans. Nat. Commun. 10, 905 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Chambers, E. S. et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64, 1744–1754 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. van der Hee, B. & Wells, J. M. Microbial regulation of host physiology by short-chain fatty acids. Trends Microbiol. https://doi.org/10.1016/j.tim.2021.02.001 (2021).

  44. Kim, K. N., Yao, Y. & Ju, S. Y. Short chain fatty acids and fecal microbiota abundance in humans with obesity: a systematic review and meta-analysis. Nutrients 11, 2512 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  45. Muller, M. et al. Circulating but not faecal short-chain fatty acids are related to insulin sensitivity, lipolysis and GLP-1 concentrations in humans. Sci. Rep. 9, 12515 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Canfora, E. E., Jocken, J. W. & Blaak, E. E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 11, 577–591 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. den Besten, G. et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54, 2325–2340 (2013).

    Article  CAS  Google Scholar 

  48. Pluznick, J. L. Microbial short-chain fatty acids and blood pressure regulation. Curr. Hypertension Rep. 19, 25 (2017).

    Article  CAS  Google Scholar 

  49. Oyama, J.-I. & Node, K. Gut microbiota and hypertension. Hypertension Res. 42, 741–743 (2019).

    Article  Google Scholar 

  50. Latif, S. A., Pardo, H. A., Hardy, M. P. & Morris, D. J. Endogenous selective inhibitors of 11β-hydroxysteroid dehydrogenase isoforms 1 and 2 of adrenal origin. Mol. Cell. Endocrinol. 243, 43–50 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Feighner, S. D. & Hylemon, P. B. Characterization of a corticosteroid 21-dehydroxylase from the intestinal anaerobic bacterium, Eubacterium lentum. J. Lipid Res. 21, 585–593 (1980).

    Article  CAS  PubMed  Google Scholar 

  52. Kumar, A., Ellermann, M. & Sperandio, V. Taming the beast: interplay between gut small molecules and enteric pathogens. Infect. Immun. 87, 277 (2019).

    Article  Google Scholar 

  53. Cameron, E. A. & Sperandio, V. Frenemies: signaling and nutritional integration in pathogen–microbiota–host interactions. Cell Host Microbe 18, 275–284 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Manfredo Vieira, S. et al. Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science 359, 1156–1161 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Aykut, B. et al. The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. Nature 574, 264–267 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wortelboer, K., Nieuwdorp, M. & Herrema, H. Fecal microbiota transplantation beyond Clostridioides difficile infections. EBioMedicine 44, 716–729 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Willing, B. P., Vacharaksa, A., Croxen, M., Thanachayanont, T. & Finlay, B. B. Altering host resistance to infections through microbial transplantation. PLoS ONE 6, e26988 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Buffie, C. G. et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205–208 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Vuong, H. E., Yano, J. M., Fung, T. C. & Hsiao, E. Y. The microbiome and host behavior. Annu. Rev. Neurosci. 40, 21–49 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Scheperjans, F. et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov. Disord. 30, 350–358 (2015).

    Article  PubMed  Google Scholar 

  61. Keshavarzian, A. et al. Colonic bacterial composition in Parkinson’s disease. Mov. Disord. 30, 1351–1360 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Peng, A. et al. Altered composition of the gut microbiome in patients with drug-resistant epilepsy. Epilepsy Res. 147, 102–107 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Xie, G. et al. Ketogenic diet poses a significant effect on imbalanced gut microbiota in infants with refractory epilepsy. World J. Gastroenterol. 23, 6164–6171 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Naseribafrouei, A. et al. Correlation between the human fecal microbiota and depression. Neurogastroenterol. Motil. 26, 1155–1162 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Jiang, H. et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav. Immun. 48, 186–194 (2015).

    Article  PubMed  Google Scholar 

  66. Cekanaviciute, E. et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc. Natl Acad. Sci. USA 114, 10713–10718 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Berer, K. et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc. Natl Acad. Sci. USA 114, 10719–10724 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. De Angelis, M. et al. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS ONE 8, e76993 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Kang, D.-W. et al. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS ONE 8, e68322 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sharon, G. et al. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell 177, 1600–1618 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sampson, T. R. et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167, 1469–1480 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Berer, K. et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479, 538–541 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Kim, S. et al. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature 549, 528–532 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Blacher, E. et al. Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature 572, 474–480 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Olson, C. A. et al. The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell 173, 1728–1741 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chu, C. et al. The microbiota regulate neuronal function and fear extinction learning. Nature 574, 543–548 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Makkawi, S., Camara-Lemarroy, C. & Metz, L. Fecal microbiota transplantation associated with 10 years of stability in a patient with SPMS. Neurol. Neuroimmunol. Neuroinflamm. 5, e459 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kang, D.-W. et al. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome 5, 10 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  79. He, Z. et al. Fecal microbiota transplantation cured epilepsy in a case with Crohn’s disease: the first report. World J. Gastroenterol. 23, 3565–3568 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Hang, S. et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576, 143–148 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Strandwitz, P. et al. GABA-modulating bacteria of the human gut microbiota. Nat. Microbiol. 4, 396–403 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Luscher, B., Shen, Q. & Sahir, N. The GABAergic deficit hypothesis of major depressive disorder. Mol. Psychiatry 16, 383–406 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Devlin, A. S. et al. Modulation of a circulating uremic solute via rational genetic manipulation of the gut microbiota. Cell Host Microbe 20, 709–715 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yu, E. W. et al. Fecal microbiota transplantation for the improvement of metabolism in obesity: the FMT-TRIM double-blind placebo-controlled pilot trial. PLoS Med. 17, e1003051 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Young, M. T., Phelan, M. J. & Nguyen, N. T. A decade analysis of trends and outcomes of male vs female patients who underwent bariatric surgery. J. Am. Coll. Surg. 222, 226–231 (2016).

    Article  PubMed  Google Scholar 

  86. DeFilipp, Z. et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N. Engl. J. Med. 381, 2043–2050 (2019).

    Article  PubMed  Google Scholar 

  87. Depommier, C. et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat. Med. 25, 1096–1103 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chiang, J. Y. L. & Ferrell, J. M. Bile acids as metabolic regulators and nutrient sensors. Annu. Rev. Nutr. 39, 175–200 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bedford, A. & Gong, J. Implications of butyrate and its derivatives for gut health and animal production. Anim. Nutr. 4, 151–159 (2018).

    Article  PubMed  Google Scholar 

  90. Sato, F. T. et al. Tributyrin attenuates metabolic and inflammatory changes associated with obesity through a GPR109A-dependent mechanism. Cells 9, 2007 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  91. Nguyen, T. D., Prykhodko, O., Hållenius, F. F. & Nyman, M. Monobutyrin reduces liver cholesterol and improves intestinal barrier function in rats fed high-fat diets. Nutrients 11, 308 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  92. Yao, L. et al. A selective gut bacterial bile salt hydrolase alters host metabolism. eLife 7, e37182 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Bai, L. et al. Engineered butyrate-producing bacteria prevents high fat diet-induced obesity in mice. Microbe Cell Fact. 19, 94–13 (2020).

    Article  CAS  Google Scholar 

  94. Larsen, N. et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 5, e9085 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Kan, H., Zhao, F., Zhang, X. X., Ren, H. & Gao, S. Correlations of gut microbial community shift with hepatic damage and growth inhibition of Carassius auratus induced by pentachlorophenol exposure. Environ. Sci. Technol. 49, 11894–11902 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Haro, C. et al. Intestinal microbiota is influenced by gender and body mass index. PLoS ONE 11, e0154090 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Patil, D. P. et al. Molecular analysis of gut microbiota in obesity among Indian individuals. J. Biosci. 37, 647–657 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Mullish, B. H. & Williams, H. R. Clostridium difficile infection and antibiotic-associated diarrhoea. Clin. Med. 18, 237–241 (2018).

    Article  Google Scholar 

  99. Zheng, P. et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol. Psychiatry 21, 786 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grants R35 GM128618 and R01 DK126855 (A.S.D.). S.N.C. acknowledges an American Heart Association Postdoctoral Fellowship. M.D.M. acknowledges an NSF Graduate Research Fellowship (DGE1745303). Figures created with BioRender.com.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Snehal N. Chaudhari or A. Sloan Devlin.

Ethics declarations

Competing interests

A.S.D. is an ad hoc consultant for Takeda Pharmaceuticals and Axial Therapeutics. The other authors have declared no competing interests.

Additional information

Peer review information Nature Chemical Biology thanks Andrew Gewirtz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhari, S.N., McCurry, M.D. & Devlin, A.S. Chains of evidence from correlations to causal molecules in microbiome-linked diseases. Nat Chem Biol 17, 1046–1056 (2021). https://doi.org/10.1038/s41589-021-00861-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-021-00861-z

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology