1932

Abstract

Tremendous ongoing theory efforts are dedicated to developing new methods for quantum chromodynamics (QCD) calculations. Qualitative rather than incremental advances are needed to fully exploit data that are still to be collected at the LHC. The maximally supersymmetric Yang–Mills theory, super Yang–Mills (sYM), shares with QCD the gluon sector, which contains the most complicated Feynman graphs but also has many special properties and is believed to be solvable exactly. It is natural to ask what we can learn from advances in sYM for addressing difficult problems in QCD. With this in mind, I review several remarkable developments and highlights of recent results in sYM. This includes all-order results for certain scattering amplitudes, novel symmetries, surprising geometrical structures of loop integrands, novel tools for the calculation of Feynman integrals, and bootstrap methods. While several insights and tools have already been carried over to QCD and have contributed to state-of-the-art calculations for LHC physics, I argue that there is a host of further fascinating ideas waiting to be explored.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-102819-100428
2021-09-21
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/nucl/71/1/annurev-nucl-102819-100428.html?itemId=/content/journals/10.1146/annurev-nucl-102819-100428&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Shifman M. Eur. Phys. J. C 59:197 2009.
  2. 2. 
    Sohnius M. Phys. Rep. 128:39 1985.
  3. 3. 
    Mandelstam S. Nucl. Phys. B 213:149 1983.
  4. 4. 
    Howe PS, Stelle K, West PC. Phys. Lett. B 124:55 1983.
  5. 5. 
    Maldacena JM. Int. J. Theor. Phys. 38:1113 1999.
  6. 6. 
    Gubser S, Klebanov IR, Polyakov AM. Phys. Lett. B 428:105 1998.
  7. 7. 
    Witten E. Adv. Theor. Math. Phys. 2:253 1998.
  8. 8. 
    Di Francesco P, Mathieu P, Senechal D Graduate Texts in Contemporary Physics New York: Springer-Verlag 1997.
  9. 9. 
    Polyakov AM. Nucl. Phys. B 164:171 1980.
  10. 10. 
    Korchemskaya I, Korchemsky G. Phys. Lett. B 287:169 1992.
  11. 11. 
    Collins JC, Soper DE, Sterman GF arXiv:hep-ph/0409313 1989.
    [Google Scholar]
  12. 12. 
    Korchemsky G, Marchesini G. Phys. Lett. B 313:433 1993.
  13. 13. 
    Korchemskaya I, Korchemsky G. Phys. Lett. B 387:346 1996.
  14. 14. 
    ’t Hooft G. Nucl. Phys. B 72:461 1974.
  15. 15. 
    Bern Z, Dixon LJ, Smirnov VA. Phys. Rev. D 72:085001 2005.
  16. 16. 
    Kotikov A, Lipatov L. Nucl. Phys. B 661:19 2003.
  17. 17. 
    Kotikov AV, Lipatov LN, Onishchenko AI, Velizhanin VN. Phys. Lett. B 595:521 2004.
  18. 18. 
    Bena I, Polchinski J, Roiban R. Phys. Rev. D 69:046002 2004.
  19. 19. 
    Dolan L, Nappi CR, Witten E. J. High Energy Phys. 0310:017 2003.
  20. 20. 
    Belitsky A, Braun V, Gorsky A, Korchemsky G. Int. J. Mod. Phys. A 19:4715 2004.
  21. 21. 
    Minahan J, Zarembo K. J. High Energy Phys. 0303:013 2003.
  22. 22. 
    Beisert N, Eden B, Staudacher M. J. Stat. Mech. 0701:P01021 2007.Exact integral equation for the cusp anomalous dimension.
  23. 23. 
    Bern Z et al. Phys. Rev. D 75:085010 2007.
  24. 24. 
    Benna M, Benvenuti S, Klebanov I, Scardicchio A. Phys. Rev. Lett. 98:131603 2007.
  25. 25. 
    Basso B, Korchemsky G, Kotanski J. Phys. Rev. Lett. 100:091601 2008.
  26. 26. 
    Kruczenski M. J. High Energy Phys. 0212:024 2002.
  27. 27. 
    Roiban R, Tseytlin AA. J. High Energy Phys. 0711:016 2007.
  28. 28. 
    Basso B, Korchemsky G. J. Phys. A 42:254005 2009.
  29. 29. 
    Bianchi L et al. J. High Energy Phys. 1607:14 2016.
  30. 30. 
    Henn JM, Korchemsky GP, Mistlberger B. J. High Energy Phys. 2004:18 2020.
  31. 31. 
    Huber T et al. Phys. Lett. B 807:135543 2020.
  32. 32. 
    von Manteuffel A, Panzer E, Schabinger RM. Phys. Rev. Lett. 124:162001 2020.
  33. 33. 
    Dixon LJ. J. High Energy Phys. 1801:75 2018.
  34. 34. 
    Dixon LJ, Magnea L, Sterman GF. J. High Energy Phys. 0808:022 2008.
  35. 35. 
    Almelid O, Duhr C, Gardi E. Phys. Rev. Lett. 117:172002 2016.
  36. 36. 
    Anastasiou C, Bern Z, Dixon LJ, Kosower D. Phys. Rev. Lett. 91:251602 2003.
  37. 37. 
    Alday LF, Maldacena JM. J. High Energy Phys. 0706:064 2007.Prescription for computing scattering amplitudes at strong coupling.
  38. 38. 
    Drummond J, Korchemsky G, Sokatchev E. Nucl. Phys. B 795:385 2008.
  39. 39. 
    Brandhuber A, Heslop P, Travaglini G. Nucl. Phys. B 794:231 2008.
  40. 40. 
    Caron-Huot S. J. High Energy Phys. 1107:58 2011.
  41. 41. 
    Drummond J, Henn J, Korchemsky G, Sokatchev E. Nucl. Phys. B 815:142 2009.
  42. 42. 
    Bern Z et al. Phys. Rev. D 78:045007 2008.
  43. 43. 
    Berkovits N, Maldacena J. J. High Energy Phys. 0809:062 2008.
  44. 44. 
    Alday LF, Roiban R. Phys. Rep. 468:153 2008.
  45. 45. 
    Grozin A Springer Tracts in Modern Physics 201 Heavy Quark Effective Theory Berlin: Springer 2004.
  46. 46. 
    Bauer CW, Fleming S, Pirjol D, Stewart IW. Phys. Rev. D 63:114020 2001.
  47. 47. 
    Gatheral J. Phys. Lett. B 133:90 1983.
  48. 48. 
    Alday LF et al. J. High Energy Phys. 1104:88 2011.Near-collinear expansion of Wilson loops from operator product expansion.
  49. 49. 
    Basso B, Sever A, Vieira P. Phys. Rev. Lett. 111:091602 2013.
  50. 50. 
    Basso B et al. J. High Energy Phys. 1508:18 2015.
  51. 51. 
    Bonini A, Fioravanti D, Piscaglia S, Rossi M. J. High Energy Phys. 1604:29 2016.
  52. 52. 
    Anastasiou C et al. J. High Energy Phys. 0905:115 2009.
  53. 53. 
    Arkani-Hamed N, Bourjaily JL, Cachazo F, Trnka J. J. High Energy Phys. 1206:125 2012.
  54. 54. 
    Henn J, Herrmann E, Parra-Martinez J. J. High Energy Phys. 1810:59 2018.
  55. 55. 
    Bourjaily JL, Volk M, Von Hippel M. J. High Energy Phys. 2002:95 2020.
  56. 56. 
    Dixon LJ, Drummond JM, Henn JM. J. High Energy Phys. 1201:24 2012.
  57. 57. 
    Drummond J, Henn J, Smirnov V, Sokatchev E. J. High Energy Phys. 0701:064 2007.
  58. 58. 
    Drummond J, Henn J, Korchemsky G, Sokatchev E. Nucl. Phys. B 826:337 2010.
  59. 59. 
    Drummond JM, Henn J, Korchemsky GP, Sokatchev E. Nucl. Phys. B 828:317 2010.
  60. 60. 
    Drummond JM, Henn JM, Plefka J. J. High Energy Phys. 0905:046 2009.Yangian symmetry of scattering amplitudes in super Yang–Mills.
  61. 61. 
    Caron-Huot S, He S. J. High Energy Phys. 1207:174 2012.
  62. 62. 
    Alday LF, Henn JM, Plefka J, Schuster T. J. High Energy Phys. 1001:77 2010.
  63. 63. 
    Caron-Huot S, Henn JM. Phys. Rev. Lett. 113:161601 2014.
  64. 64. 
    Pauli W. Z. Phys. 36:336 1926.
  65. 65. 
    Ben-Israel R, Tumanov AG, Sever A. J. High Energy Phys. 1808:122 2018.
  66. 66. 
    Bern Z, Enciso M, Shen CH, Zeng M. Phys. Rev. Lett. 121:121603 2018.
  67. 67. 
    Henn JM, Mistlberger B. Phys. Rev. Lett. 117:171601 2016.
  68. 68. 
    Abreu S et al. Phys. Rev. Lett. 122:121603 2019.
  69. 69. 
    Chicherin D et al. Phys. Rev. Lett. 122:121602 2019.
  70. 70. 
    Bartels J, Lipatov L, Sabio Vera A. Phys. Rev. D 80:045002 2009.
  71. 71. 
    Lipatov L. JETP Lett. 59:596 1994.
  72. 72. 
    Faddeev L, Korchemsky G. Phys. Lett. B 342:311 1995.
  73. 73. 
    Britto R, Cachazo F, Feng B, Witten E. Phys. Rev. Lett. 94:181602 2005.
  74. 74. 
    Brandhuber A, Heslop P, Travaglini G. Phys. Rev. D 78:125005 2008.
  75. 75. 
    Drummond J, Henn J. J. High Energy Phys. 0904:018 2009.
  76. 76. 
    Dixon LJ, Henn JM, Plefka J, Schuster T. J. High Energy Phys. 1101:35 2011.
  77. 77. 
    Witten E. Commun. Math. Phys. 252:189 2004.
  78. 78. 
    Hodges A. J. High Energy Phys. 1305:135 2013.
  79. 79. 
    Mason L, Skinner D. J. High Energy Phys. 0911:045 2009.
  80. 80. 
    Carrasco JJM, Johansson H. J. Phys. A 44:454004 2011.
  81. 81. 
    Ossola G, Papadopoulos CG, Pittau R. Nucl. Phys. B 763:147 2007.
  82. 82. 
    Berger C et al. Phys. Rev. D 78:036003 2008.
  83. 83. 
    Badger S, Frellesvig H, Zhang Y. J. High Energy Phys. 1312:45 2013.
  84. 84. 
    Badger S, Brønnum-Hansen C, Hartanto HB, Peraro T. Phys. Rev. Lett. 120:092001 2018.
  85. 85. 
    Abreu S et al. J. High Energy Phys. 1811:116 2018.
  86. 86. 
    Dunbar DC, Godwin JH, Perkins WB, Strong JM. Phys. Rev. D 101:016009 2020.
  87. 87. 
    Bern Z, Carrasco J, Johansson H. Phys. Rev. D 78:085011 2008.
  88. 88. 
    Bern Z, Carrasco JJM, Johansson H. Phys. Rev. Lett. 105:061602 2010.
  89. 89. 
    Bern Z et al. arXiv:1909.01358 [hep-th] 2019.
    [Google Scholar]
  90. 90. 
    Arkani-Hamed N et al. J. High Energy Phys. 1101:41 2011.
  91. 91. 
    Arkani-Hamed N et al. Grassmannian Geometry of Scattering AmplitudesCambridge, UK: Cambridge Univ. Press 2016.Planar loop integrand of super Yang–Mills from positive Grassmannian.
  92. 92. 
    Franco S, Galloni D, Penante B, Wen C. J. High Energy Phys. 1506:199 2015.
  93. 93. 
    Benincasa P, Gordo D. J. High Energy Phys. 1711:192 2017.
  94. 94. 
    Henn J, Mistlberger B, Smirnov VA, Wasser P. J. High Energy Phys. 2004:167 2020.
  95. 95. 
    Arkani-Hamed N, Bourjaily JL, Cachazo F, Trnka J. Phys. Rev. Lett. 113:261603 2014.
  96. 96. 
    Arkani-Hamed N, Trnka J. J. High Energy Phys. 1410:30 2014.Amplituhedron: dual geometric definition of planar loop integrands in super Yang–Mills.
  97. 97. 
    Goncharov AB, Spradlin M, Vergu C, Volovich A. Phys. Rev. Lett. 105:151605 2010.
  98. 98. 
    Jegerlehner F, Nyffeler A. Phys. Rep. 477:1 2009.
  99. 99. 
    Abreu S, Britto R, Duhr C, Gardi E. Phys. Rev. Lett. 119:051601 2017.
  100. 100. 
    Del Duca V, Duhr C, Smirnov VA. J. High Energy Phys. 1005:84 2010.
  101. 101. 
    Golden J et al. J. High Energy Phys. 1401:91 2014.
  102. 102. 
    Gehrmann T, Remiddi E. Nucl. Phys. B 580:485 2000.
  103. 103. 
    Henn JM. Phys. Rev. Lett. 110:251601 2013.Novel method for computing Feynman integrals.
  104. 104. 
    Duhr C. J. Phys. A Math. Theor. 44:15 2011.
  105. 105. 
    Lee RN. J. High Energy Phys. 1504:108 2015.
  106. 106. 
    Meyer C. J. High Energy Phys. 1704:6 2017.
  107. 107. 
    Prausa M. Comput. Phys. Commun. 219:361 2017.
  108. 108. 
    Gituliar O, Magerya V. Comput. Phys. Commun. 219:329 2017.
  109. 109. 
    Dlapa C, Henn J, Yan K. J. High Energy Phys. 2005:25 2020.
  110. 110. 
    Henn JM. J. Phys. A Math. Theor. 48:153001 2015.
  111. 111. 
    Duhr C. J. High Energy Phys. 1208:43 2012.
  112. 112. 
    Duhr C, Dulat F. J. High Energy Phys. 1908:135 2019.
  113. 113. 
    Caola F, Henn JM, Melnikov K, Smirnov VA. J. High Energy Phys. 1409:43 2014.
  114. 114. 
    Gehrmann T, von Manteuffel A, Tancredi L, Weihs E. J. High Energy Phys. 1406:32 2014.
  115. 115. 
    Gehrmann T et al. Phys. Rev. Lett. 113:212001 2014.
  116. 116. 
    Weinzierl S. Phys. Rev. D 84:074007 2011.
  117. 117. 
    Anastasiou C, Sterman G. J. High Energy Phys. 1907:56 2019.
  118. 118. 
    Hannesdottir H, Schwartz MD arXiv:1906.03271 [hep-th] 2019.
    [Google Scholar]
  119. 119. 
    Henn JM, Peraro T, Stahlhofen M, Wasser P. Phys. Rev. Lett. 122:201602 2019.
  120. 120. 
    von Manteuffel A, Panzer E, Schabinger RM. J. High Energy Phys. 1502:120 2015.
  121. 121. 
    Bourjaily JL et al. J. High Energy Phys. 1203:32 2012.
  122. 122. 
    Bourjaily JL, Trnka J. J. High Energy Phys. 1508:119 2015.
  123. 123. 
    Caron-Huot S, Henn JM. J. High Energy Phys. 1406:114 2014.
  124. 124. 
    Lipstein AE, Mason L. J. High Energy Phys. 1401:169 2014.
  125. 125. 
    Herrmann E, Parra-Martinez J. J. High Energy Phys. 2002:99 2020.
  126. 126. 
    Basham C, Brown LS, Ellis SD, Love ST. Phys. Rev. Lett. 41:1585 1978.
  127. 127. 
    Henn J, Sokatchev E, Yan K, Zhiboedov A. Phys. Rev. D 100:036010 2019.
  128. 128. 
    Hofman DM, Maldacena J. J. High Energy Phys. 0805:012 2008.Energy–energy correlation in super Yang–Mills.
  129. 129. 
    Kologlu M, Kravchuk P, Simmons-Duffin D, Zhiboedov A arXiv:1905.01311 [hep-th] 2019.
    [Google Scholar]
  130. 130. 
    Dixon LJ et al. Phys. Rev. Lett. 120:102001 2018.
  131. 131. 
    Luo MX, Shtabovenko V, Yang TZ, Zhu HX. J. High Energy Phys. 1906:37 2019.
  132. 132. 
    Korchemsky G. J. High Energy Phys. 2001:8 2020.
  133. 133. 
    Dixon LJ, Moult I, Zhu HX. Phys. Rev. D 100:014009 2019.
  134. 134. 
    Chen H et al. J. High Energy Phys. 2008:28 2020.
  135. 135. 
    Chen H, Moult I, Zhang X, Zhu HX. Phys. Rev. D 102:054012 2020.
  136. 136. 
    Chicherin D, Henn J, Sokatchev E, Yan K arXiv:2001.10806 [hep-th] 2020.
    [Google Scholar]
  137. 137. 
    Eden RJ, Landshoff PV, Olive DI, Polkinghorne JC The Analytic S-Matrix Cambridge, UK: Cambridge Univ. Press 1966.
    [Google Scholar]
  138. 138. 
    Bern Z, Dixon LJ, Dunbar DC, Kosower DA. Nucl. Phys. B 425:217 1994.
  139. 139. 
    Dixon LJ, Drummond JM, Henn JM. J. High Energy Phys. 1111:23 2011.
  140. 140. 
    Caron-Huot S, Dixon LJ, McLeod A, von Hippel M. Phys. Rev. Lett. 117:241601 2016.Steinmann relations applied to bootstrap.
  141. 141. 
    Caron-Huot S et al. J. High Energy Phys. 1908:16 2019.
  142. 142. 
    Basso B, Caron-Huot S, Sever A. J. High Energy Phys. 1501:27 2015.
  143. 143. 
    Drummond J, Foster J, Gurdogan O. Phys. Rev. Lett. 120:161601 2018.
  144. 144. 
    Dixon LJ et al. J. High Energy Phys. 1702:137 2017.
  145. 145. 
    Drummond J, Foster J, Gurdogan O, Papathanasiou G. J. High Energy Phys. 1903:87 2019.
  146. 146. 
    Li Y, Zhu HX. Phys. Rev. Lett. 118:022004 2017.
  147. 147. 
    Almelid O et al. J. High Energy Phys. 1709:73 2017.
  148. 148. 
    Drummond J et al. J. High Energy Phys. 1308:133 2013.
  149. 149. 
    Chicherin D, Henn J, Mitev V. J. High Energy Phys. 1805:164 2018.
/content/journals/10.1146/annurev-nucl-102819-100428
Loading
/content/journals/10.1146/annurev-nucl-102819-100428
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error