Skip to main content
Log in

Synthesis of Mineral-Like SrWO4 Ceramics with the Scheelite Structure and a Radioisotope Product Based on It

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

An efficient method was presented to perform the hydrothermal synthesis of a nanocrystalline SrWO4 powder with the scheelite structure and the spark plasma sintering (SPS) of ceramics based on it. The composition, morphology, and structure of samples under various synthesis temperature conditions were studied by X-ray powder diffraction analysis, scanning electron microscopy, and energy-dispersive spectroscopy. The efficiency of the ultrafast (several minutes long) sintering of the nanocrystalline SrWO4 powder was described by the dynamics of its consolidation as a function of the SPS time and temperature. The temperature of formation was determined for a single-phase SrWO4 ceramic with a high relative density and a low strontium leaching rate of less than 10–6 g/(cm2 day), which is in demand as matrices for the reliable immobilization of the high-energy radionuclide strontium-90. For the first time, a method was implemented to produce a sample of a SrWO4 ceramic–high-alloy steel coupled composite by SPS as a test article of an open ionizing radiation source. The method consists in the diffusion sintering of materials within a single step at 1000°C for 5 min with the mandatory use of a sintering additive in the form of a mixture of metals (70 wt % Ti + 30 wt % Ag). The results of this work showed the possibility of developing a high-tech solution for the production of high-performance radioisotope products by SPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. V. S. Semenishchev and A. V. Voronina, Isotopes of Strontium: Properties and Applications, Ed. by P. Pathak and D. K. Gupta (Springer Nature, 2020). https://doi.org/10.1007/978-3-030-15314-4_2).

  2. E. V. Steinfelds, M. A. Prelas, S. K. Loyalka, et al., in Proceedings of the International Congress on Advances in Nuclear Power Plants ICAPP’06, 2006, p. 2696.

  3. O. H. Kyuhak, M. A. Prelas, J. B. Rothenberger, et al., Nucl. Technol. 179, 234 (2012). https://doi.org/10.13182/nt12-a14095

    Article  Google Scholar 

  4. S. J. DeNardo and G. L. DeNardo, Int. J. Radiat. Oncol. Biol. Phys. 66, 89(2006). https://doi.org/10.1016/j.ijrobp.2006.03.066

    Article  CAS  Google Scholar 

  5. H. S. Chong, X. Sun, Y. Chen, et al., Bioorg. Med. Chem. 23, 1169 (2015). https://doi.org/10.1016/j.bmc.2014.12.035

    Article  CAS  PubMed  Google Scholar 

  6. R. M. V. Silva, W. Belinato, W. S. Santos, et al., Radiat. Phys. Chem. 167, 108235 (2020). https://doi.org/10.1016/j.radphyschem.2019.03.039

    Article  CAS  Google Scholar 

  7. C. M. Jantzen, Radioactive Waste Management and Contaminated Site Clean-Up, Ed. by W. Lee, M. Ojovan, and C. Jantzen (Woodhead Publishing Limited, 2013). https://doi.org/10.1533/9780857097446.1.171

  8. I. W. Donald, Waste Immobilization in Glass and Ceramic Based Hosts Radioactive, Toxic and Hazardous Wastes (John Wiley & Sons Ltd, Chichester, 2010). https://doi.org/10.1002/9781444319354

  9. D. Caurant, P. Loiseau, O. Majerus, et al., Glasses, Glass-Ceramics and Ceramics for Immobilization of Highly Radioactive Nuclear Wastes (Nova Publishers, 2009).

    Google Scholar 

  10. A. I. Orlova, A. A. Lizin, S. V. Tomilin, et al., Radiochemistry 53, 63 (2011). https://doi.org/10.1134/S1066362211010085

    Article  CAS  Google Scholar 

  11. D. J. Gregg, I. Karatchevtseva, G. J. Thorogood, et al., J. Nucl. Mater. 446, 224 (2014). https://doi.org/10.1016/j.jnucmat.2013.11.048

    Article  CAS  Google Scholar 

  12. A. I. Orlova, Structural Chemistry of Inorganic Actinide Compounds, Ed. by S. V. Krivovichev, P. C. Burns, and I. G. Tananaev (Elsevier, 2007). https://doi.org/10.1016/B978-044452111-8/50009-0

  13. A. I. Orlova, N. V. Malanina, V. N. Chuvil’deev, et al., Radiochemistry 56, 380 (2014). https://doi.org/10.1134/S1066362214040043

    Article  CAS  Google Scholar 

  14. A. I. Orlova and M. I. Ojovan, Materials (Basel) 12, 2638 (2019). https://doi.org/10.3390/ma12162638

    Article  CAS  PubMed Central  Google Scholar 

  15. Dos. Damascena, R. H. Passos, M. Arab, De. Pereira, C. Souza, et al., Acta Crystallogr., Sect. B 73, 466 (2017). https://doi.org/10.1107/S2052520617002827

  16. E. A. Potanina, A. I. Orlova, A. V. Nokhrin, et al., Ceram. Int. 44, 4033 (2018). https://doi.org/10.1016/j.ceramint.2017.11.199

    Article  CAS  Google Scholar 

  17. E. A. Potanina, A. I. Orlova, A. V. Nokhrin, et al., Russ. J. Inorg. Chem. 64, 296 (2019). https://doi.org/10.1134/S0036023619030161

    Article  CAS  Google Scholar 

  18. E. A. Potanina, A. I. Orlova, D. A. Mikhailov, et al., J. Alloys Compd. 774, 182 (2019). https://doi.org/10.1016/j.jallcom.2018.09.348

    Article  CAS  Google Scholar 

  19. G. Flor, V. Massarotti, and R. Riccardi, J. Phys. Sci. 29, 503 (1974). https://doi.org/10.1515/zna-1974-0322

    Article  CAS  Google Scholar 

  20. T. Thongtem, S. Kungwankunakorn, B. Kuntalue, et al., J. Alloys Compd. 506, 475 (2010). https://doi.org/10.1016/j.jallcom.2010.07.033

    Article  CAS  Google Scholar 

  21. X. Li, Z. Song, and B. Qu, Ceram. Int. 40, 1205 (2014). https://doi.org/10.1016/j.ceramint.2013.05.102

    Article  CAS  Google Scholar 

  22. L. D. Feng, X. B. Chen, and C. J. Mao, Mater. Lett. 64, 2420 (2010). https://doi.org/10.1016/j.matlet.2010.08.024

    Article  CAS  Google Scholar 

  23. A. Lan, B. Li, H. Shen, et al., J. Mater. Sci. Mater. Electron. 26, 1695 (2015). https://doi.org/10.1007/s10854-014-2595-6

    Article  CAS  Google Scholar 

  24. L. S. Cavalcante, J. C. Sczancoski, N. C. Batista, et al., Adv. Powder Technol. 24, 344 (2013). https://doi.org/10.1016/j.apt.2012.08.007

    Article  CAS  Google Scholar 

  25. H. Feng, Y. Yang, and X. Wang, Ceram. Int. 40, 10115 (2014). https://doi.org/10.1016/j.ceramint.2014.01.129

    Article  CAS  Google Scholar 

  26. J. Liao, B. Qiu, H. Wen, et al., Mater. Res. Bull. 44, 1863 (2009). https://doi.org/10.1016/j.materresbull.2009.05.013

    Article  CAS  Google Scholar 

  27. E. A. Olevsky and D. V. Dudina, Field-Assisted Sintering: Science and Applications (Springer, 2018). https://doi.org/10.1007/978-3-319-76032-2

  28. E. A. Olevsky, S. Kandukuri, and L. Froyen, J. Appl. Phys. 102, 114913 (2007). https://doi.org/10.1063/1.2822189

  29. Z. Y. Hu, Z. H. Zhang, X. W. Cheng, et al., Mater. Des. 191, 108662 (2020). https://doi.org/10.1016/j.matdes.2020.108662

    Article  CAS  Google Scholar 

  30. V. G. Sevastyanov, E. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 59, 1361 (2014).

    Article  CAS  Google Scholar 

  31. T. L. Simonenko, M. V. Kalinina, N. P. Simonenko, et al., Int. J. Hydrogen Energy 44, 20345 (2019). https://doi.org/10.1016/j.ijhydene.2019.05.231

    Article  CAS  Google Scholar 

  32. N. A. Safronova, O. S. Kryzhanovska, M. V. Dobrotvorska, et al., Ceram. Int. 46, 6537 (2020). https://doi.org/10.1016/j.ceramint.2019.11.137

    Article  CAS  Google Scholar 

  33. E. K. Papynov, O. O. Shichalin, M. A. Medkov, et al., Glass Phys. Chem. 44, 632 (2018). https://doi.org/10.1134/S1087659618060159

    Article  CAS  Google Scholar 

  34. D. V. Dudina and A. K. Mukherjee, J. Nanomater. 2013, 625218 (2013). https://doi.org/10.1155/2013/625218

    Article  CAS  Google Scholar 

  35. E. K. Papynov, O. O. Shichalin, I. Y. Buravlev, et al., Russ. J. Inorg. Chem. 65, 263 (2020). https://doi.org/10.1134/S0036023620020138

    Article  CAS  Google Scholar 

  36. E. P. Simonenko, N. P. Simonenko, E. K. Papynov, et al., J. Sol-Gel Sci. Technol. 82, 748 (2017). https://doi.org/10.1007/s10971-017-4367-2

    Article  CAS  Google Scholar 

  37. N. P. Shapkin, E. K. Papynov, O. O. Shichalin, et al., Russ. J. Inorg. Chem. 66, 629 (2021). https://doi.org/10.1134/S0036023621050168

    Article  CAS  Google Scholar 

  38. A. I. Orlova, A. N. Troshin, D. A. Mikhailov, et al., Radiochemistry 56, 98 (2014). https://doi.org/10.1134/S1066362214010196

    Article  CAS  Google Scholar 

  39. V. I. Pet’kov, E. A. Asabina, A. A. Lukuttsov, et al., Radiochemistry 57, 632 (2015). https://doi.org/10.1134/S1066362215060119

    Article  CAS  Google Scholar 

  40. O. O. Shichalin, E. K. Papynov, V. Y. Maiorov, et al., Radiochemistry 61, 185 (2019). https://doi.org/10.1134/S1066362219020097

    Article  CAS  Google Scholar 

  41. E. K. Papynov, Glass-Ceramics: Properties, Applications and Technology, Ed. by K. N. Y. Narang (Nova Science Publishers, 2018).

    Google Scholar 

  42. A. I. Orlova, A. K. Koryttseva, A. E. Kanunov, et al., Inorg. Mater. 48, 313 (2012). https://doi.org/10.1134/S002016851202015X

    Article  CAS  Google Scholar 

  43. E. A. Potanina, A. I. Orlova, A. V. Nokhrin, et al., Ceram. Int. 44, 4033 (2018). https://doi.org/10.1016/j.ceramint.2017.11.199

    Article  CAS  Google Scholar 

  44. M. C. Stennett, I. J. Pinnock, and N. C. Hyatt, J. Nucl. Mater. 414, 352 (2011). https://doi.org/10.1016/j.jnucmat.2011.04.041

    Article  CAS  Google Scholar 

  45. R. C. O’Brien, R. M. Ambrosi, N. P. Bannister, et al., J. Nucl. Mater. 393, 108 (2009). https://doi.org/10.1016/j.jnucmat.2009.05.012

    Article  CAS  Google Scholar 

  46. J. Amoroso, J. C. Marra, M. Tang, et al., J. Nucl. Mater. 454, 12 (2014). https://doi.org/10.1016/j.jnucmat.2014.07.035

    Article  CAS  Google Scholar 

  47. B. M. Clark, P. Tumurugoti, J. W. Amoroso, et al., Metall. Mater. Trans. E 1, 341 (2014). https://doi.org/10.1007/s40553-014-0035-4

    Article  CAS  Google Scholar 

  48. E. K. Papynov, O. O. Shichalin, I. Y. Buravlev, et al., Vacuum 180, 109628 (2020). https://doi.org/10.1016/j.vacuum.2020.109628

    Article  CAS  Google Scholar 

  49. E. K. Papynov, A. A. Belov, O. O. Shichalin, et al., Nucl. Eng. Technol. 53, 2289 (2021). https://doi.org/10.1016/j.net.2021.01.024

    Article  CAS  Google Scholar 

  50. S. K. Sun, M. C. Stennett, C. L. Corkhill, et al., J. Nucl. Mater. 500, 11 (2018). https://doi.org/10.1016/j.jnucmat.2017.12.021

    Article  CAS  Google Scholar 

  51. L. C. Harnett, L. J. Gardner, S. K. Sun, et al., J. Nucl. Sci. Technol. 56, 891 (2019). https://doi.org/10.1080/00223131.2019.1602484

    Article  CAS  Google Scholar 

  52. E. K. Papynov, A. A. Belov, O. O. Shichalin, et al., 66, 645 (2021). https://doi.org/10.1134/S0036023621050132

  53. E. K. Papynov, O. O. Shichalin, V. Y. Mayorov, et al., J. Hazard. Mater. 369, 25 (2019). https://doi.org/10.1016/j.jhazmat.2019.02.016

    Article  CAS  PubMed  Google Scholar 

  54. T. Ungár, Mater. Sci. Forum 278281, 151 (1998). https://doi.org/10.4028/www.scientific.net/msf.278-281.151

    Article  Google Scholar 

  55. C. Thieme, A. Erlebach, C. Patzig, et al., CrystEngComm 20, 4565 (2018). https://doi.org/10.1039/c8ce00512e

    Article  CAS  Google Scholar 

  56. O. M. Ivasishin, S. V. Shevchenko, N. L. Vasiliev, et al., Acta Mater. 51, 1019 (2003). https://doi.org/10.1016/S1359-6454(02)00505-0

    Article  CAS  Google Scholar 

  57. F. Wakai, N. Enomoto, and H. Ogawa, Acta Mater. 48, 1297 (2000). https://doi.org/10.1016/S1359-6454(99)00405-X

    Article  CAS  Google Scholar 

  58. H. Eichelkraut, G. Abbruzzese, and K. Lucke, Acta Metall. 36, 55 (1988). https://doi.org/10.1016/0001-6160(88)90028-4

    Article  CAS  Google Scholar 

  59. V. N. Chuvil’deev, Y. V. Blagoveshchenskiy, A. V. Nokhrin, et al., J. Alloys Compd. 708, 547 (2017). https://doi.org/10.1016/j.jallcom.2017.03.035

    Article  CAS  Google Scholar 

  60. A. V. Nokhrin, Tech. Phys. Lett. 38, 630 (2012). https://doi.org/10.1134/S1063785012070073

    Article  CAS  Google Scholar 

  61. J. D. Fan, H. J. Zhang, J. Y. Wang, et al., J. Appl. Phys. 100, 063513 (2006). https://doi.org/10.1063/1.2335510

    Article  CAS  Google Scholar 

  62. V. Y. Ilichev, V. P. Popov, L. V. Skibina, et al., Cryogenics (Guildf) 18, 90 (1978). https://doi.org/10.1016/0011-2275(78)90116-9

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The studies in this work were made using the equipment at the Shared Equipment Center, the Far Eastern Federal University, Vladivostok, Russia, and the Interdisciplinary Center for Nanotechnology and New Functional Materials, Far Eastern Federal University, Vladivostok, Russia. Some of the measurements of experimental data (X-ray powder diffraction and atomic absorption analysis) were carried out on instruments of the Shared Equipment Center “Far Eastern Center for Structural Research” (Institute of Chemistry, Far Eastern Branch, Russian Academy of Science, Vladivostok, Russia) within the framework of mutual cooperation.

The authors are grateful to the staff of the Institute of Chemistry of the Far East Branch of the Russian Academy of Sciences, Ph.D. Parot’kina Yu.A. and Ph.D. Shlyk D.Kh. for carrying out X-ray powder diffraction and atomic absorption studies and provision of experimental data obtained on devices.

Funding

This work was supported under a state assignment of the Ministry of Science and Higher Education of the Russian Federation (subject no. 00657-2020-0006).

The X-ray powder diffraction analysis and atomic adsorption analysis of samples was performed under a state assignment of the Institute of Chemistry, Far-Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia (subject 0205-2021-0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Papynov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papynov, E.K., Shichalin, O.O., Belov, A.A. et al. Synthesis of Mineral-Like SrWO4 Ceramics with the Scheelite Structure and a Radioisotope Product Based on It. Russ. J. Inorg. Chem. 66, 1434–1446 (2021). https://doi.org/10.1134/S0036023621090114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621090114

Keywords:

Navigation