Skip to main content
Log in

Biosynthesized silver nanoparticles induce phytotoxicity in Vigna radiata L.

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

With the recent developments in the field of nanotechnology, the biosynthesis of nanoparticles has increased tremendously. Silver nanoparticles (SNPs) are among the most synthesized nanoparticles and this extensive synthesis can elevate the amounts of SNPs in the environment, which, consequently, pose a serious threat to the ecosystem and can bring unwanted environmental effects. As plants are an important part of ecosystem, investigation of toxic effects of SNPs on plants is particularly interesting. This study evaluates the potential risk of SNPs interaction with plants. For this, seeds of Vigna radiata L. were screened in presence of SNPs (20 mgL−1) using the germination, growth, and biochemical parameters as a phototoxicity criterion. The 19.57 nm average-sized SNPs were synthesized via the biosynthesis method. These biosynthesized SNPs were then applied on two varieties of V. radiata (Azri and High cross 404) and found to have variety dependent toxic effects on seed germination, growth, and biochemical parameters. Seed germination, root length, shoot length, fresh weight, chlorophyll, carotenoid, sugar content, and total proteins were reduced by 20, 46, 50, 18, 55, 62, 82, and 67%, respectively, in High cross 404, when compared with control (distilled water). The variety Azri was less sensitive than the variety High cross 404. In conclusion, the results demonstrated that SNPs affect seed germination and seedling growth when internalized and accumulated in plants, revealing that SNPs were responsible for the side effects. More in-depth research is required, in the form of different concentrations of SNPs or different plant species, to draw a logical conclusion and develop legislation about the safe use of biosynthesized SNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  • Abd-Alla MH, Nafady NA, Khalaf DM (2016) Assessment of silver nanoparticles contamination on faba bean-Rhizobium leguminosarum bv. viciae-Glomus aggregatum symbiosis: implications for induction of autophagy process in root nodule. Agric Ecosyst Environ 218:163–177. https://doi.org/10.1016/j.agee.2015.11.022

    Article  CAS  Google Scholar 

  • Abdel-Azeem EA, Elsayed BA (2013) Phytotoxicity of silver nanoparticles on Vicia faba seedlings. NY Sci J 6:148–156

    Google Scholar 

  • Ahmed S, Ahmad SM, Swami BL, Ikram S (2016) Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res Appl Sci 9:1–7

    Article  CAS  Google Scholar 

  • Al-Huqail AA, Hatata MM, Al-Huqail AA, Ibrahim MM (2018) Preparation, characterization of silver phyto nanoparticles and their impact on growth potential of Lupinus termis L. seedlings. Saudi J Biol Sci 25(2):313–319

    Article  CAS  PubMed  Google Scholar 

  • Anjum NA, Gill SS, Duarte AC, Pereira E, Ahmad I (2013) Silver nanoparticles in soil–plant systems. J Nano Res 15:1–26

    Article  Google Scholar 

  • Baalbaki RZ, Zurayk RA, Bleik SN, Talhuk A (1990) Germination and seedling development of drought susceptible wheat under moisture stress. Seed Sci Technol 17:291–302

    Google Scholar 

  • Bagherzade G, Tavakoli MM, Namaei MH (2017) Green synthesis of silver nanoparticles using aqueous extract of saffron (Crocus sativus L.) wastages and its antibacterial activity against six bacteria. Asian Pac J Trop Biomed 7(3):227

    Article  Google Scholar 

  • Balen B, Tkalec M, Sikic S, Tolic S, Cvjetko P, Pavlica M, Vidakovic-Cifrek Z (2011) Biochemical responses of Lemna minor experimentally exposed to cadmium and zinc. Ecotoxicology 20:815–826

    Article  CAS  PubMed  Google Scholar 

  • Barbasz A, Kreczmer B, Oćwieja M (2016) Effects of exposure of callus cells of two wheat varieties to silver nanoparticles and silver salt (AgNO3). Acta Physiol Plant 38:76

    Article  CAS  Google Scholar 

  • Blaser SA, Scheringer M, Macleod M, Hungerbühler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390:396–409

    Article  CAS  PubMed  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein dye-binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brar SK, Verma M, Tyagi R, Surampalli R (2010) Engineered nanoparticles in wastewater and wastewater sludge-evidence and impacts. Waste Manag 30(3):504e520

    Article  CAS  Google Scholar 

  • Castiglione MR, Cremonine R (2009) Nanoparticles and higher plants. Caryologia 62:161–165

    Article  Google Scholar 

  • Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104:2050–2055. https://doi.org/10.1073/pnas.0608582104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colman BP, Espinasse B, Richardson CJ, Matson CW, Lowry GV, Hunt DE, Wiesner MR, Bernhardt ES (2014) Emerging contaminant or an old toxin in disguise? Silver nanoparticle impacts on ecosystems. Environ Sci Technol 48(9):5229e5236

    Article  CAS  Google Scholar 

  • Cvjetko P, Zovko M, Peharec-Stefanic P, Biba R, Tkalec M, Domijan AM, Vinkovic Vrcek I, Letofsky-Papst I, Sikic S, Balen B (2018) Phytotoxic effects of silver nanoparticles in tobacco plants. Environ Sci Pollut Res 25:5590–5602. https://doi.org/10.1007/s11356-017-0928-8

    Article  CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ (2013) Silver nanoparticles disrupt Wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47:1082–1090

    Article  CAS  PubMed  Google Scholar 

  • Dobrucka R, Szymanski M, Przekop R (2019) The study of toxicity effects of biosynthesized silver nanoparticles using Veronica officinalis extract. Int J Environ Sci Technol 16:8517–8526. https://doi.org/10.1007/s13762-019-02441-0

    Article  CAS  Google Scholar 

  • DuBois M, Gilles KA, Hamilton JK, Rebers PT, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Feichtmeier NS, Walther P, Leopold K (2015) Uptake, effects, and regeneration of barley plants exposed to gold nanoparticles. Environ Sci Pollut Res Int 22(11):8549–8558. https://doi.org/10.1007/s11356-014-4015-0

    Article  CAS  PubMed  Google Scholar 

  • Geisler-Lee J, Brooks M, Gerfen J, Wang Q, Fotis C, Sparer A, Ma X, Berg R, Geisler M (2014) Reproductive toxicity and life history study of silver nanoparticle effect, uptake and transport in Arabidopsis thaliana. Nanomaterials 4(2):301–318. https://doi.org/10.3390/nano4020301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giordani T, Fabrizi A, Guidi L, Natali L, Giunti G, Ravasi F, Cavallini A, Pardossi A (2012) Response of tomato plants exposed to treatment with nanoparticles. EQA-Environ Qual 8:27–38

    Google Scholar 

  • Griffitt RJ, Hyndman K, Denslow ND, Barber DS (2009) Comparison of molecular and histological changes in zebra fish gills exposed to metallic nanoparticles. Toxicol Sci 107:404–415

    Article  CAS  PubMed  Google Scholar 

  • Hamed-Chaman S, Arab M, Roozban M, Ahmadi N (2012) Postharvest longevity and quality of cut carnations ‘pax’ and ‘tabor’, as affected by silver nanoparticles. In: VII International Postharvest Symposium 1012:527e532.

  • Harris AT, Bali R (2008) On the formation and extent of uptake of silver nanoparticles by live plants. J Nanopart Res 10:691–695

    Article  CAS  Google Scholar 

  • Hedberg J, Skoglund S, Karlsson ME, Wold S, OdnevallWallinder I, Hedberg Y (2014) Sequential studies of silver released from silver nanoparticles in aqueous media simulating sweat, laundry detergent solutions and surface water. Environ Sci Technol 48(13):7314e7322

    Article  CAS  Google Scholar 

  • Holden PA, Gardea-Torresdey JL, Klaessig F, Turco RF, Mortimer M, Hund-Rinke K, Hubal E, Avery D, Barcelo D, Behra R (2016) Considerations of environmentally relevant test conditions for improved evaluation of ecological hazards of engineered nanomaterials. Environ Sci Technol 50(12):6124–6145. https://doi.org/10.1021/acs.est.6b00608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain Z, Mustafa G, Komatsu S (2015) Plant responses to nanoparticle stress. Int J Mol Sci 16:26644–26653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsin YH, Chen CF, Huang S, Shih TS, Lai PS, Chueh PJ (2008) The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 179:130–139

    Article  CAS  PubMed  Google Scholar 

  • Jemal K, Sandeep BV, Pola S (2017) Synthesis, characterization, and evaluation of the antibacterial activity of Allophylus serratus leaf and leaf derived callus extracts mediated silver nanoparticles. J Nanomater 2017:4213275

    Article  CAS  Google Scholar 

  • Jiang HS, Li M, Chang FY, Li W, Yin LY (2012) Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza. Environ Toxicol Chem 31:1880–1886

    Article  CAS  PubMed  Google Scholar 

  • Jiang HS, Qiu XN, Li GB, Li W, Yin LY (2014) Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza. Environ Toxicol Chem 33:1398–1405

    Article  CAS  PubMed  Google Scholar 

  • Karami S, Reza M, Fatemeh H (2015) Effect of silver nanoparticles on free amino acids content and antioxidant defense system of tomato plants. Indian J Plant Physiol 20:257–263. https://doi.org/10.1007/s40502-015-0171-6

    Article  CAS  Google Scholar 

  • Kathiravan V, Ravi S, Ashokkumar S (2014) Synthesis of silver nanoparticles from Melia dubia leaf extract and their invitro anticancer activity. Spectroch Acta Part A: Mol Biomol Spectro 130:116–121

    Article  CAS  Google Scholar 

  • Kaveh R, Li YS, Ranjbar S, Tehrani R, Brueck CL, Van Aken B (2013) Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ Sci Technol 47:10637–10644

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Saratale RG, Shinde S, Syed A, Ameen F, Ghodake G (2018) Green synthesis of silver nanoparticles using Laminaria japonica extract: characterization and seedling growth assessment. J Clean Prod 172:2910–2918

    Article  CAS  Google Scholar 

  • Krizkova S, Ryant P, Krystofova O, Adam V, Galiova M, Beklova M, Babula P, Kaiser J, Novotny K, Novotny J, Liska M, Malina R, Zehnalek J, Hubalek J, Havel L, Kizek R (2008) Multi-instrumental analysis of tissues of sunflower plants treated with silver (i) ions – plants as bioindicators of environmental pollution. Sensors 8:445–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar B, Smita K, Cumbal L, Debut A, Pathak RN (2014) Sonochemical synthesis of silver nanoparticles using starch: a comparison. Bioinorg Chem Appl 8:784268

    Google Scholar 

  • Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407:5243–5246. https://doi.org/10.1016/j.scitotenv.2009.06.024

    Article  CAS  PubMed  Google Scholar 

  • Kushwah KS, Verma RC, Patel S, Jain NK (2018) Colchicine induced polyploidy in Chrysanthemum carinatum L. J Phylogenet Evol Biol 6(193):2

    Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of Photosynthetic biomembranes. Methods Enzymol 148:350–382. https://doi.org/10.1016/0076-6879(87)48036-1

    Article  CAS  Google Scholar 

  • Lin D, Xing B (2007) Pytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Lu X, Huang Y (2011) Genomic analysis of cytotoxicity response to nanosilver in human dermal fibroblasts. J Biomed Nanotechnol 7:263–275

    Article  CAS  PubMed  Google Scholar 

  • Mehmood A, Murtaza G (2016) Application of SNPs to improve yield of Pisum sativum L. (pea). IET Nanobiotechnol 11(4):390–394

    Article  PubMed Central  Google Scholar 

  • Mirzajani F, Askari H, Hamzelou S, Schober Y, Reompp A, Ghassempour A, Spengler B (2014) Proteomics study of silver nanoparticles toxicity on Oryza sativa L. Ecotoxicol Environ Saf 108:335–339. https://doi.org/10.1016/j.ecoenv.2014.07.013

    Article  CAS  PubMed  Google Scholar 

  • Monica RC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62:161–165

    Article  Google Scholar 

  • Mustafa G, Sakata K, Hossain Z, Komatsu S (2015) Proteomic study on the effects of silver nanoparticles on soybean under flooding stress. J Proteomics 122:100–118. https://doi.org/10.1016/j.jprot.2015.03.030

    Article  CAS  PubMed  Google Scholar 

  • Nair PMG, Chung IM (2014) Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings. Chemosphere 112:105–113. https://doi.org/10.1016/j.chemosphere.2014.03.056

    Article  CAS  PubMed  Google Scholar 

  • Nair PMG, Chung IM (2015) Physiological and molecular level studies on the toxicity of silver nanoparticles in germinating seedlings of mung bean (Vigna radiata L.). Acta Physiol Plant 37:1719

    Article  CAS  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nano particulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Nam DH, Lee BC, Eom IC, Kim P, Yeo MK (2014) Uptake and bioaccumulation of titanium-and silver nanoparticles in aquatic ecosystems. Mol Cell Toxicol 10(1):9e17

    Article  CAS  Google Scholar 

  • Nguyen THD, Vardhanabhuti B, Lin M, Mustapha A (2017) Antibacterial properties of selenium nanoparticles and their toxicity to Caco-2 cells. Food Control 77:17–24

    Article  CAS  Google Scholar 

  • Noori A, Donnelly T, Colbert J, Cai W, Newman LA, White JC (2020) Exposure of tomato (Lycopersicon esculentum) to silver nanoparticles and silver nitrate: physiological and molecular response. Int J Phytoremed 22(1):40–51

    Article  CAS  Google Scholar 

  • Oukarroum A, Barhoumi L, Pirastru L, Dewez D (2013) Silver nanoparticle toxicity effect on growth and cellular Viability of the aquatic plant Lemna gibba. Environ Toxicol Chem 32:902–907. https://doi.org/10.1002/etc.2131

    Article  CAS  PubMed  Google Scholar 

  • Panda KK, Achary VMM, Krishnaveni R, Padhi BK, Sarangi SN, Sahu SN, Pandaa BB (2011) In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicol Invitro 25:1097–1105

    Article  CAS  Google Scholar 

  • Panyala NR, Pena-Mendez EM, Havel J (2008) Silver or silver nanoparticles: a hazardous threat to the environment and human health? J Appl Biomed 6(3):117e129

    Article  Google Scholar 

  • Parveen A, Rao S (2014) Effect of nanosilver on seed germination and seedling growth in Pennisetum glaucum. J Clust Sci 26(3):693–701. https://doi.org/10.1007/s10876-014-0728-y

    Article  CAS  Google Scholar 

  • Patlolla AK, Berry A, May L, Tchounwou PB (2012) Genotoxicity of silver nanoparticles in Vicia faba: a pilot study on the environmental monitoring of nanoparticles. Int J Environ Res Public Health 9:1649–1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pham CH, Yi J, Gu MB (2012) Biomarker gene response in male Medaka (Oryzias latipes) chronically exposed to silver nanoparticle. Ecotoxicol Environ Saf 78:239–245

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro SKP, Chaves MM, Miguel TBAR, Barros FC, Farias CP, Ferreira OP, Miguel EC (2020) Toxic effects of silver nanoparticles on the germination and root development of lettuce (Lactuca sativa). Aust J Bot 68:127–136. https://doi.org/10.1071/BT19170

    Article  CAS  Google Scholar 

  • Pittol M, Tomacheski D, Simoes DN, Ribeiro VF, Santana RMC (2017) Macroscopic effects of silver nanoparticles and titanium dioxide on edible plant growth. Environ Nanotechnol Monit Manage 8:127–133. https://doi.org/10.1016/j.enmm.2017.07.003

    Article  Google Scholar 

  • Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452–453:321–332

    Article  PubMed  CAS  Google Scholar 

  • Pourmorad F, Hosseinimehr SJ, Shahabimajd N (2006) Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. Afr J Biotech 5:1142–1145

    CAS  Google Scholar 

  • Pradhan S, Patra P, Mitra S, Dey KK, Basu S, Chandra S, Palit P, Goswami A (2015) Copper nanoparticle (CuNP) nanochain arrays with a reduced toxicity response: a biophysical and biochemical outlook on Vigna radiata. J Agric Food Chem 63:2606–2617. https://doi.org/10.1021/jf504614w

    Article  CAS  PubMed  Google Scholar 

  • Qian H, Peng X, Han X, Ren J, Sun L, Fu Z (2013) Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J Environ Sci 25:1947–1956. https://doi.org/10.1016/S1001-0742(12)60301-5

    Article  CAS  Google Scholar 

  • Rastogi A, Zivcak M, Tripathi DK, Yadav S, Kalaji HM, Brestic M (2019) Phytotoxic effect of silver nanoparticles in Triticum aestivum: improper regulation of photosystem I activity as the reason for oxidative damage in the chloroplast. Photosynthetica 57:209–216. https://doi.org/10.32615/ps.2019.019

    Article  CAS  Google Scholar 

  • Ribeiro F, Gallego-Urrea JA, Jurkschat K, Crossley A, Hassellov M, Taylor C, Soares A, Loureiro MVMS (2014) Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Sci Total Environ 466:232e241

    Google Scholar 

  • Sadak MS (2019) Impact of silver nanoparticles on plant growth, some biochemical aspects, and yield of fenugreek plant (Trigonella foenum-graecum). Bull Natl Res Cent 43:38. https://doi.org/10.1186/s42269-019-0077-y

    Article  Google Scholar 

  • Santos CSC, Gabriel B, Blanchy M, Menes O, Garcia D, Blanco M, Arconada N, Neto V (2015) Industrial applications of nanoparticles – a prospective overview. Mater Today-Proc 2:456–465

    Article  Google Scholar 

  • Scherer MD, Sposito JCV, Falco WF, Grisolia AB, Andrade LHC, Lima SM, Machado G, Nascimento VA, Gonçalves DA, Wender H, Oliveira SL, Caires ARL (2019) Cytotoxic and genotoxic effects of silver nanoparticles on meristematic cells of Allium cepa roots: A close analysis of particle size dependence. Sci Total Environ 660:459–467

    Article  CAS  PubMed  Google Scholar 

  • Shams G, Ranjbar M, Amiri A (2013) Effect of silver nanoparticles on concentration of silver heavy element and growth indexes in cucumber (Cucumis sativus L. negeen). J Nanopart Res 15:1630

    Article  CAS  Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au. Ag, and bimetallic Au core-Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Kumar A (2015) Effects of nano silver oxide and silver ions on growth of Vigna radiata. Bull Environ Contam Toxicol 95:379–384. https://doi.org/10.1007/s00128-015-1595-4

    Article  CAS  PubMed  Google Scholar 

  • Singh VP, Kumar J, Singh S, Prasad SM (2014) Dimethoate modifies enhanced UV-B effects on growth, photosynthesis and oxidative stress in mung bean (Vigna radiata L.) seedlings: implication of salicylic acid. Pestic Biochem Phys 116:13–23

    Article  CAS  Google Scholar 

  • Sosan A, Svistunenko D, Straltsova D, Tsiurkina K, Smolich I, Lawson T, Subramaniam S, Golovko V, Anderson D, Sokolik A, Colbeck I, Demidchik V (2016) Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of Arabidopsis thaliana plants. Plant J 85(2):245–257. https://doi.org/10.1111/tpj.13105

    Article  CAS  PubMed  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479

    Article  CAS  PubMed  Google Scholar 

  • Syu Y, Hung JH, Chen JC, Chuang H (2014) Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol Biochem 83:57–64. https://doi.org/10.1016/j.plaphy.2014.07.010

    Article  CAS  PubMed  Google Scholar 

  • Thiruvengadam M, Gurunathan S, Chung IM (2015) Physiological, metabolic, and transcriptional effects of biologically-synthesized silver nanoparticles in turnip (Brassica rapa ssp. rapa L.). Protoplasma 252:1031–1046. https://doi.org/10.1007/s00709-014-0738-5

    Article  CAS  PubMed  Google Scholar 

  • Thuesombat P, Hannongbua S, Akasit S, Chadchawan S (2014) Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol Environ Saf 104:302–309. https://doi.org/10.1016/j.ecoenv.2014.03.022

    Article  CAS  PubMed  Google Scholar 

  • Tkalec M, Peharec SP, Cvjetko P, Sikic S, Pavlica M, Balen B (2014) The effects of cadmium-zinc interactions on biochemical responses in tobacco seedlings and adult plants. PLoS ONE 9:e87582

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2015) Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol Biochem 96:189e198

    Article  CAS  Google Scholar 

  • Tripathi DK, Singh S, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2016) Silicon nanoparticles more efficiently alleviate arsenate toxicity than silicon in maize cultivar and hybrid differing in arsenate tolerance. Front Environ Sci 4:46

    Article  Google Scholar 

  • Tripathi DK, Singh S, Singh S, Srivastava PK, Singh VP, Singh S, Prasad SM, Singh PK, Dubey NK, Pandey AC, Chauhan DK (2017a) Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110:167–177

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Tripathi A, Guar S, Singh S, Singh Y, Vishwakarma K, Yadav G, Sharma S, Singh VK, Mishra RK, Upadhyay RG, Dubey NK, Lee Y, Chauhan DK (2017b) Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: a concentric review. Front Microbiol 8:7. https://doi.org/10.3389/fmicb.2017.00007

    Article  Google Scholar 

  • Vannini C, Domingo G, Onelli E, Prinsi B, Marsoni M, Espen L, Bracale M (2013) Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS ONE 8:68752. https://doi.org/10.1371/journal.pone.0068752

    Article  CAS  Google Scholar 

  • Verma SK, Das AK, Patel MK, Shah A, Kumar V, Gantait S (2018) Engineered nanomaterials for plant growth and development: a perspective analysis. Sci Total Environ 630:1413–1435. https://doi.org/10.1016/j.scitotenv.2018.02.313

    Article  CAS  PubMed  Google Scholar 

  • Verma DK, Patel S, Kushwah KS (2020) Green biosynthesis of silver nanoparticles and impact on growth, chlorophyll, yield and phytotoxicity of Phaseolus vulgaris L. Vegetos. https://doi.org/10.1007/s42535-020-00150-5

    Article  Google Scholar 

  • Vishwakarma K, Shweta UN, Singh J, Liu S, Singh VP, Prasad SM, Chauhan DK, Tripathi DK, Sharma S (2017) Differential phytotoxic impact of plant mediated silver nanoparticles (AgNPs) and silver nitrate (AgNO3) on Brassica sp. Front Plant Sci 8:1501. https://doi.org/10.3389/fpls.2017.01501

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Westerhoff P, Hristovski KD (2012) Fate and biological effects of silver, titanium dioxide, and C60 (fullerene) nanomaterials during simulated wastewater treatment processes. J Hazard Mater 201:16e22

    Google Scholar 

  • Wei C, Zhang Y, Guo J, Han B, Yang X, Yuan J (2010) Effects of Silica nanoparticles on growth and photosynthetic pigment contents of Scenedesmus obliquus. J Environ Sci (china) 22:155–160

    Article  CAS  Google Scholar 

  • Wierzbicka M, Obidzinska J (1998) The effect of lead on seed inhibition and germination in different plant species. Plant Sci 137:155–171

    Article  CAS  Google Scholar 

  • Yang Y, Zhang C, Hu Z (2013) Impact of metallic and metal oxide nanoparticles on wastewater treatment and anaerobic digestion. Environ Sci Process Impacts 15(1):39e48

    Article  Google Scholar 

  • Yin L, Cheng Y, Espinasse B, Colman PB, Auffan M, Wiesner M, Rose Liu J, Bernhardt ES (2011) More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45:2360–2367

    Article  CAS  PubMed  Google Scholar 

  • Yin L, Colman BP, McGill BM, Wright JP, Bernhardt ES (2012) Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS ONE. https://doi.org/10.1371/journal.pone.0047674

    Article  PubMed  PubMed Central  Google Scholar 

  • Yousaf H, Mehmood A, Ahmad KS, Raffi M (2020) Green synthesis of silver nanoparticles and their applications as an alternative antibacterial and antioxidant agents. Mater Sci Eng C 112:110901

    Article  CAS  Google Scholar 

  • Zahir AA, Bagavan A, Kamaraj C, Elango G, Rahuman AA (2012) Efficacy of plant-mediated synthesized silver nanoparticles against Sitophilus oryzae. J Biopest 5(Suppl):95e102

    Google Scholar 

  • Zhang Z, Kong F, Vardhanabhuti B, Mustapha A, Lin M (2012) Detection of engineered silver nanoparticle contamination in pears. J Agri Food Chem 60:10762–10767. https://doi.org/10.1021/jf303423q

    Article  CAS  Google Scholar 

  • Zhang CL, Jiang HS, Gu SP, Zhou XH, Lu ZW, Kang XH, Yin L, Huang J (2019) Combination analysis of the physiology and transcriptome provides insights into the mechanism of silver nanoparticles phytotoxicity. Environ Pollut 252:1539e1549

    Article  Google Scholar 

  • Zilberberg L, Mitlin S, Shankar H, Asscher M (2015) Buffer layer assisted growth of Ag nanoparticles in titania thin films. J Phys Chem C 119:28979–28991

    Article  CAS  Google Scholar 

  • Zou J, Xu T, Hou B, Wu D, Sun Y (2007) Controlled growth of silver nanoparticles in a hydrothermal process. China Particuol 5:206–212

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We honestly acknowledge the support and assistance extended by the Institute of Space Technology (IST) and High-tech Laboratory of the University of Azad Jammu and Kashmir for FESEM, XRD, FTIR, and UV-vis spectroscopy analysis.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

NA: Investigation, Data curation, Writing—original draft. AM: Methodology, Conceptualization, Writing—review & editing, Supervision. KSA: Writing—review & editing. KH: Writing—review & editing.

Corresponding author

Correspondence to Ansar Mehmood.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors have approved the final version for submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 875 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anwar, N., Mehmood, A., Ahmad, K.S. et al. Biosynthesized silver nanoparticles induce phytotoxicity in Vigna radiata L.. Physiol Mol Biol Plants 27, 2115–2126 (2021). https://doi.org/10.1007/s12298-021-01073-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-021-01073-4

Keywords

Navigation